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Burt Totaro

(1) Suppose that H is a hyperplane in Euclidean n-space Rn defined by u · x = c
for some unit vector u and constant c. The reflection in H is the map from Rn to itself
given by x 7→ x − 2(x · u − c)u. Show that this is an isometry. Letting P,Q be points
of Rn, show that there is a reflection in some hyperplane that maps P to Q.

(2) Suppose that l1 and l2 are non-parallel lines in the Euclidean plane R2, and that
ri denotes the reflection of R2 in the line li, for i = 1, 2. Show that the composite r1r2
is a rotation of R2, and describe (in terms of the lines l1 and l2) the resulting fixed point
and angle of rotation.

(3) Let R(P, θ) denote the clockwise rotation of R2 through an angle θ about a
point P . If A,B,C are the vertices, labelled clockwise, of a triangle in R2, prove that
R(A, θ)R(B,φ)R(C,ψ) is the identity if and only if either θ = 2α, φ = 2β, and ψ = 2γ
or θ = φ = ψ = 0, where α, β, γ denote the angles at the vertices A,B,C of the triangle
ABC.

(4) Show from first principles that a (continuous) curve of shortest length between
two points in Euclidean space is a straight line segment, parametrized monotonically.

(5) Let G be a finite subgroup of Isom(Rm). By considering the barycentre (i.e.,
average) of the orbit of the origin under G, or otherwise, show that G fixes some point of
Rm. If G is a finite subgroup of Isom(R2), show that it is either cyclic or dihedral (that
is, D4 = Z/2× Z/2, or, for n ≥ 3, the full symmetry group D2n of a regular n-gon).

(6) Prove that any isometry of the unit sphere is induced from an isometry of R3

which fixes the origin. Prove that any matrix A ∈ O(3,R) is the product of at most
three reflections in planes through the origin. Deduce that an isometry of the unit
sphere can be expressed as the product of at most three reflections in spherical lines.
What isometries are obtained as the product of two reflections? What isometries can
be written as the product of three reflections and no fewer?

(7) Let P be a point on the unit sphere S2. For fixed ρ, with 0 < ρ < π, the spherical
circle with centre P and radius ρ is the set of points Q ∈ S2 whose spherical distance
from P is ρ. Prove that a spherical circle of radius ρ on S2 has circumference 2π sin ρ
and area 2π(1− cos ρ).

(8) Given a spherical line l on the sphere S2 and a point P not on l, show that there
is a spherical line l′ passing through P and intersecting l at right angles. Prove that the
minimum distance d(P,Q) from P to a point Q on l is attained at one of the two points
of intersection of l with l′, and that l′ is unique if this minimum distance is less than
π/2.

(9) Let π : S2 → C∞ denote the stereographic projection map. Show that π gives a
bijection between the spherical circles on S2 and the circles and straight lines on C.

(10) Show that any Möbius transformation T 6= 1 on C∞ has one or two fixed points.
Show that the Möbius transformation corresponding (under the stereographic projection
map) to a rotation of S2 through a nonzero angle has exactly two fixed points z1 and
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z2, where z2 = −1/z1. If now T is a Möbius transformation with two fixed points z1
and z2 satisfying z2 = −1/z1, prove that either T corresponds to a rotation of S2, or
one of the fixed points, say z1, is an attractive fixed point, i.e., for z 6= z2, Tnz → z1 as
n→∞.

(11) Prove that Möbius transformations of C∞ preserve cross-ratios. If u, v ∈ C
correspond to points P,Q on S2, and d denotes the angular distance from P to Q on
S2, show that − tan2(d/2) is the cross ratio of the points u, v,−1/u,−1/v, taken in an
appropriate order (which you should specify).

(12) Suppose we have a polygonal decomposition of the sphere S2 or the locally
Euclidean torus T by convex geodesic polygons, where each polygon is contained in
some hemisphere (for the case of S2), or is the bijective image of a Euclidean polygon in
R2 under the covering map R2 → T (for the case of T ). If the number of vertices is V ,
the number of edges is E, and the number of faces (polygons) is F , show that V −E+F
equals 2 for the sphere, and 0 for the torus. We denote by Fn the number of faces with
precisely n edges, and Vm the number of vertices where precisely m edges meet; show
that

∑
n nFn = 2E =

∑
mmVm.

We suppose that each face has at least three edges, and that at least three edges meet
at each vertex. If V3 = 0, deduce that E ≥ 2V . If F3 = 0, deduce that E ≥ 2F . For the
sphere, deduce that V3 +F3 > 0. For the torus, exhibit a polygonal decomposition such
that V3 = 0 = F3.

———————————————————————————————————–
(13) For every spherical triangle 4 = ABC, show that a < b+ c, b < c+a, c < a+ b,

and a + b + c < 2π. Conversely, show that for any three positive numbers a, b, c less
than π satisfying the above conditions, we have cos(b+ c) < cos a < cos(b− c), and that
there is a spherical triangle (unique up to isometries of S2) with those sides.

(14) A spherical triangle 4 = ABC has vertices given by unit vectors A,B,C in R3,
sides of length a, b, c, and angles α, β, γ (where the side opposite vertex A is of length a
and the angle at A is α, and so on). The polar triangle A′B′C ′ is defined by the unit
vectors in the directions B×C, C×A, and A×B. Prove that the sides and angles of
the polar triangle are π−α, π− β, π− γ and π− a, π− b, π− c respectively. Deduce the
formula

sinα sinβ cos c = cos γ + cosα cosβ.

(15) Two spherical triangles 41,42 on a sphere S2 are said to be congruent if there
is an isometry of S2 that takes 41 to 42. Show that 41,42 are congruent if and only
if they have equal angles. What other conditions for congruence can you find?

(16) With the notation of Question (12), given a polygonal decomposition of S2 into
convex spherical polygons, prove the identity∑

n

(6− n)Fn = 12 + 2
∑
m

(m− 3)Vm.

If each face has at least three edges, and at least three edges meet at each vertex, deduce
the inequality 3F3 + 2F4 + F5 ≥ 12.

The surface of a football is decomposed into (convex) spherical hexagons and pen-
tagons, with precisely three faces meeting at each vertex. How many pentagons are
there? Demonstrate the existence of such a decomposition with each vertex contained
in precisely one pentagon.

Note to the reader: You should look at all the questions up to Question 12, and
then any further questions you have time for.
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