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TKC Lent 2009

1. Let U be an open subset of R2 with the Riemannian metric

ds2 = E dx2
1 + 2F dx1 dx2 +Gdx2

2 .

For any point P ∈ U , show that there is a λ > 0 and a neighbourhood N of P with

(E − λ) dx2
1 + 2F dx1 dx2 + (G− λ) dx2

2

a Riemannian metric on N .

[Hint: A real matrix
(
a b
b d

)
is positive definite if and only if a > 0 and ad− b2 > 0.]

If U is path-connected, we define the distance between two points of U as the infimum of the lengths
of all curves in U between those two points. Give an example where this distance is not realised as
the length of any curve in U between the two points.

2. Consider the Riemannian metric

ds2 =
dx2

1 + dx2
2

1− (x2
1 + x2

2)

on the unit disc D. Prove that diameters of the disc are length minimising curves and hence
geodesics. Show that the distance between points is bounded but areas are unbounded.

3. Let U = {(x1, x2) ∈ R2 : |x1|, |x2| < 1} and consider the two Riemannian metrics

dx2
1

(1− x2
1)2

+
dx2

2

(1− x2
2)2

and
dx2

1

(1− x2
2)2

+
dx2

2

(1− x2
1)2

on U . Prove that there is no isometry between the two spaces but that an area preserving diffeo-
morphism does exist.
[Consider the length of curves going out to the boundary.]

4. For the unit sphere S in R3, find the unit normal at a point x, the tangent plane at x and the
intersection of planes parallel to the tangent plane with S.

5. Show that
r : (0, π)× (0, 2π)→ R3 ; (u, v) 7→ (sinu cos v, sinu sin v, cosu)

is a surface parametrisation. Describe the image. What is the corresponding Riemannian metric?
6. Let T denote the torus obtained by rotating the circle {(x, 0, z) ∈ R3 : (x − 2)2 + z2 = 1} about

the z-axis. Describe a surface parametrisation for T and hence calculate its area.
7. Prove directly that the hyperbolic lines satisfy the differential equations for geodesics in the hyper-

bolic plane.
8. For a > 0, let C(a) be the cone:

C(a) = {(x, y, z) ∈ R3 : z2 = a(x2 + y2) and z > 0} .

Find a parametrisation for C(a) and hence find the geodesics on C(a).
When a = 3, show that no (infinite) geodesic intersects itself. When a > 3, show that there are
geodesics that intersect themselves.

9. Let σ = (σ1, σ2) : (a, b)→ {(x, y) ∈ R2 : y > 0} be a unit speed curve in the upper half-plane that
does not intersect itself and maps the open interval (a, b) homeomorphically onto its image. The
surface of revolution R is then obtained by rotating σ about the x-axis. Show that

(s, t) 7→ (σ1(t), σ2(t) cos s, σ2(t) sin s)

is a surface parametrisation for part of R. Calculate the Riemannian metric and the second funda-
mental form. Hence show that the Gaussian curvature is given by

K = −σ
′′
2 (t)
σ2(t)

.
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10. Using the formulae from the previous question, calculate the Gaussian curvature for a sphere, for
the hyperboloid of one sheet:

x2 + y2 − z2 = +1

and the hyperboloid of two sheets:
x2 + y2 − z2 = −1 .

For the torus described in question 6, mark the points where the Gaussian curvature K satisfies
K < 0; K = 0 and K > 0.

11. Let R be a surface in R3 that is closed and bounded. Explain why there is a point Q of R at a
maximal distance d from the origin. By considering the sphere S centred on the origin and of radius
d, or otherwise, show that the Gaussian curvature of R is strictly positive at Q. Hence the closed
and bounded surface R can not have Gaussian curvature less than or equal to 0 at every point.

12. Let f : R2 → R be a smooth function with

f(0, 0) = 0 ,
∂f

∂x
(0, 0) = 0 ,

∂f

∂y
(0, 0) = 0 .

Let r be the surface parametrisation:

r : (x, y) 7→ (x, y, f(x, y)) .

Show that the Riemannian metric at the origin is ds2 = dx2 + dy2 and the second fundamental
form is

∂2f

∂x2
dx2 + 2

∂2f

∂x ∂y
dx dy +

∂2f

∂y2
dy2

(for a suitable choice of the unit normal) where all of the partial derivatives are evaluated at (0, 0).
Deduce that the Gaussian curvature at the origin is

K =
∂2f

∂x2

∂2f

∂y2
−
(
∂2f

∂y2

)2

.

Now suppose that g : R2 → R is another smooth function with g(0, 0) = 0 and g(x, y) > f(x, y) for
every (x, y) ∈ R2. Show that

∂g

∂x
(0, 0) = 0 ,

∂g

∂y
(0, 0) = 0 .

Show further that

∂2g

∂x2
u2 + 2

∂2g

∂x ∂y
uv +

∂2g

∂y2
v2 >

∂2f

∂x2
u2 + 2

∂2f

∂x ∂y
uv +

∂2f

∂y2
v2

at (0, 0) and deduce that (
∂2g
∂x2

∂2g
∂x ∂y

∂2g
∂x ∂y

∂2g
∂y2

)
>

(
∂2f
∂x2

∂2f
∂x ∂y

∂2f
∂x ∂y

∂2f
∂y2

)
at (0, 0).
Does this imply that the Gaussian curvature of the graph of g at the origin is greater than or equal
to the Gaussian curvature of the graph of f at the origin.

Please send any comment or corrections to t.k.carne@dpmms.cam.ac.uk .

Supervisors can obtain an annotated version of this example sheet from DPMMS.


