1. Let U be an open subset of \mathbb{R}^{2} with the Riemannian metric

$$
d s^{2}=E d x_{1}^{2}+2 F d x_{1} d x_{2}+G d x_{2}^{2} .
$$

For any point $P \in U$, show that there is a $\lambda>0$ and a neighbourhood N of P with

$$
(E-\lambda) d x_{1}^{2}+2 F d x_{1} d x_{2}+(G-\lambda) d x_{2}^{2}
$$

a Riemannian metric on N.
[Hint: A real matrix $\left(\begin{array}{ll}a & \dot{b} \\ b & d\end{array}\right)$ is positive definite if and only if $a>0$ and $a d-b^{2}>0$.]
If U is path-connected, we define the distance between two points of U as the infimum of the lengths of all curves in U between those two points. Give an example where this distance is not realised as the length of any curve in U between the two points.
2. Consider the Riemannian metric

$$
d s^{2}=\frac{d x_{1}^{2}+d x_{2}^{2}}{1-\left(x_{1}^{2}+x_{2}^{2}\right)}
$$

on the unit disc \mathbb{D}. Prove that diameters of the disc are length minimising curves and hence geodesics. Show that the distance between points is bounded but areas are unbounded.
3. Let $U=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}:\left|x_{1}\right|,\left|x_{2}\right|<1\right\}$ and consider the two Riemannian metrics

$$
\frac{d x_{1}^{2}}{\left(1-x_{1}^{2}\right)^{2}}+\frac{d x_{2}^{2}}{\left(1-x_{2}^{2}\right)^{2}} \quad \text { and } \quad \frac{d x_{1}^{2}}{\left(1-x_{2}^{2}\right)^{2}}+\frac{d x_{2}^{2}}{\left(1-x_{1}^{2}\right)^{2}}
$$

on U. Prove that there is no isometry between the two spaces but that an area preserving diffeomorphism does exist.
[Consider the length of curves going out to the boundary.]
4. For the unit sphere S in \mathbb{R}^{3}, find the unit normal at a point \boldsymbol{x}, the tangent plane at \boldsymbol{x} and the intersection of planes parallel to the tangent plane with S.
5. Show that

$$
\boldsymbol{r}:(0, \pi) \times(0,2 \pi) \rightarrow \mathbb{R}^{3} ; \quad(u, v) \mapsto(\sin u \cos v, \sin u \sin v, \cos u)
$$

is a surface parametrisation. Describe the image. What is the corresponding Riemannian metric?
6. Let T denote the torus obtained by rotating the circle $\left\{(x, 0, z) \in \mathbb{R}^{3}:(x-2)^{2}+z^{2}=1\right\}$ about the z-axis. Describe a surface parametrisation for T and hence calculate its area.
7. Prove directly that the hyperbolic lines satisfy the differential equations for geodesics in the hyperbolic plane.
8. For $a>0$, let $C(a)$ be the cone:

$$
C(a)=\left\{(x, y, z) \in \mathbb{R}^{3}: z^{2}=a\left(x^{2}+y^{2}\right) \text { and } z>0\right\} .
$$

Find a parametrisation for $C(a)$ and hence find the geodesics on $C(a)$.
When $a=3$, show that no (infinite) geodesic intersects itself. When $a>3$, show that there are geodesics that intersect themselves.
9. Let $\sigma=\left(\sigma_{1}, \sigma_{2}\right):(a, b) \rightarrow\left\{(x, y) \in \mathbb{R}^{2}: y>0\right\}$ be a unit speed curve in the upper half-plane that does not intersect itself and maps the open interval (a, b) homeomorphically onto its image. The surface of revolution R is then obtained by rotating σ about the x-axis. Show that

$$
(s, t) \mapsto\left(\sigma_{1}(t), \sigma_{2}(t) \cos s, \sigma_{2}(t) \sin s\right)
$$

is a surface parametrisation for part of R. Calculate the Riemannian metric and the second fundamental form. Hence show that the Gaussian curvature is given by

$$
K=-\frac{\sigma_{2}^{\prime \prime}(t)}{\sigma_{2}(t)} .
$$

10. Using the formulae from the previous question, calculate the Gaussian curvature for a sphere, for the hyperboloid of one sheet:

$$
x^{2}+y^{2}-z^{2}=+1
$$

and the hyperboloid of two sheets:

$$
x^{2}+y^{2}-z^{2}=-1 .
$$

For the torus described in question 6 , mark the points where the Gaussian curvature K satisfies $K<0 ; K=0$ and $K>0$.
11. Let R be a surface in \mathbb{R}^{3} that is closed and bounded. Explain why there is a point Q of R at a maximal distance d from the origin. By considering the sphere S centred on the origin and of radius d, or otherwise, show that the Gaussian curvature of R is strictly positive at Q. Hence the closed and bounded surface R can not have Gaussian curvature less than or equal to 0 at every point.
12. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a smooth function with

$$
f(0,0)=0, \quad \frac{\partial f}{\partial x}(0,0)=0, \quad \frac{\partial f}{\partial y}(0,0)=0 .
$$

Let \boldsymbol{r} be the surface parametrisation:

$$
\boldsymbol{r}:(x, y) \mapsto(x, y, f(x, y))
$$

Show that the Riemannian metric at the origin is $d s^{2}=d x^{2}+d y^{2}$ and the second fundamental form is

$$
\frac{\partial^{2} f}{\partial x^{2}} d x^{2}+2 \frac{\partial^{2} f}{\partial x \partial y} d x d y+\frac{\partial^{2} f}{\partial y^{2}} d y^{2}
$$

(for a suitable choice of the unit normal) where all of the partial derivatives are evaluated at $(0,0)$. Deduce that the Gaussian curvature at the origin is

$$
K=\frac{\partial^{2} f}{\partial x^{2}} \frac{\partial^{2} f}{\partial y^{2}}-\left(\frac{\partial^{2} f}{\partial y^{2}}\right)^{2}
$$

Now suppose that $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is another smooth function with $g(0,0)=0$ and $g(x, y) \geqslant f(x, y)$ for every $(x, y) \in \mathbb{R}^{2}$. Show that

$$
\frac{\partial g}{\partial x}(0,0)=0, \quad \frac{\partial g}{\partial y}(0,0)=0
$$

Show further that

$$
\frac{\partial^{2} g}{\partial x^{2}} u^{2}+2 \frac{\partial^{2} g}{\partial x \partial y} u v+\frac{\partial^{2} g}{\partial y^{2}} v^{2} \geqslant \frac{\partial^{2} f}{\partial x^{2}} u^{2}+2 \frac{\partial^{2} f}{\partial x \partial y} u v+\frac{\partial^{2} f}{\partial y^{2}} v^{2}
$$

at $(0,0)$ and deduce that

$$
\left(\begin{array}{cc}
\frac{\partial^{2} g}{\partial x^{2}} & \frac{\partial^{2} g}{\partial x \partial y} \\
\frac{\partial^{2} g}{\partial x \partial y} & \frac{\partial^{2} g}{\partial y^{2}}
\end{array}\right) \geqslant\left(\begin{array}{cc}
\frac{\partial^{2} f}{\partial x^{2}} & \frac{\partial^{2} f}{\partial x \partial y} \\
\frac{\partial^{2} f}{\partial x \partial y} & \frac{\partial^{2} f}{\partial y^{2}}
\end{array}\right)
$$

at $(0,0)$.
Does this imply that the Gaussian curvature of the graph of g at the origin is greater than or equal to the Gaussian curvature of the graph of f at the origin.

Please send any comment or corrections to t.k.carne@dpmms.cam.ac.uk.

Supervisors can obtain an annotated version of this example sheet from DPMMS.

