GEOMETRY — Example Sheet 3
TKC Lent 2009

1. Let U be an open subset of R? with the Riemannian metric
ds* = Eda? + 2F dxy dag + G da3 .
For any point P € U, show that there is a A > 0 and a neighbourhood N of P with
(E — )\ da? 4 2F dzy dzy + (G — \) da

a Riemannian metric on N.

[Hint: A real matriz “

b d
If U is path-connected, we define the distance between two points of U as the infimum of the lengths
of all curves in U between those two points. Give an example where this distance is not realised as
the length of any curve in U between the two points.

b) is positive definite if and only if a > 0 and ad — b* > 0.

2. Consider the Riemannian metric
dz? + d3

1= (el +ad)
on the unit disc . Prove that diameters of the disc are length minimising curves and hence
geodesics. Show that the distance between points is bounded but areas are unbounded.

ds?

3. Let U = {(x1,72) € R? : |x1],|z2| < 1} and consider the two Riemannian metrics

dx? dx3 and da? n dx3
(=22 (1—a3)? =32  (1—a2)

on U. Prove that there is no isometry between the two spaces but that an area preserving diffeo-
morphism does exist.
[Consider the length of curves going out to the boundary.]

4. For the unit sphere S in R?, find the unit normal at a point x, the tangent plane at = and the
intersection of planes parallel to the tangent plane with S.

5. Show that
r:(0,7) x (0,27) — R*;  (u,v) +— (sinwu cos v, sinusinv, cosu)
is a surface parametrisation. Describe the image. What is the corresponding Riemannian metric?

6. Let T denote the torus obtained by rotating the circle {(x,0,2) € R? : (z — 2)2 + 22 = 1} about
the z-axis. Describe a surface parametrisation for 7' and hence calculate its area.

7. Prove directly that the hyperbolic lines satisfy the differential equations for geodesics in the hyper-
bolic plane.

8. For a > 0, let C'(a) be the cone:
C(a) ={(z,y,2) € R®: 2* = a(a® +¢*) and z > 0} .

Find a parametrisation for C'(a) and hence find the geodesics on C(a).

When a = 3, show that no (infinite) geodesic intersects itself. When a > 3, show that there are
geodesics that intersect themselves.

9. Let 0 = (01,02) : (a,b) — {(z,y) € R? : y > 0} be a unit speed curve in the upper half-plane that
does not intersect itself and maps the open interval (a,b) homeomorphically onto its image. The
surface of revolution R is then obtained by rotating ¢ about the z-axis. Show that

(s,1) = (01(t), 02(t) cos s, 02(t) sin s)

is a surface parametrisation for part of R. Calculate the Riemannian metric and the second funda-
mental form. Hence show that the Gaussian curvature is given by

oy (t
g9 (t) ’
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10.

11.

12.

Using the formulae from the previous question, calculate the Gaussian curvature for a sphere, for
the hyperboloid of one sheet:
w2 +y? -2 =41

and the hyperboloid of two sheets:

2?4y -2 =—1.

For the torus described in question 6, mark the points where the Gaussian curvature K satisfies
K <0; K=0and K > 0.

Let R be a surface in R? that is closed and bounded. Explain why there is a point @ of R at a
maximal distance d from the origin. By considering the sphere S centred on the origin and of radius
d, or otherwise, show that the Gaussian curvature of R is strictly positive at ). Hence the closed
and bounded surface R can not have Gaussian curvature less than or equal to 0 at every point.

Let f:R? — R be a smooth function with

_o 9f _o 91 _
£0.00=0, 2(0,0)=0, a—y(o,o) =0.

Let r be the surface parametrisation:

r:(z,y) = (2,y, f(z,9)) .
Show that the Riemannian metric at the origin is ds? = dz? + dy? and the second fundamental

form is 5 52 5 f
—— da? 4+ 2—— dx dy + —= dy?
o2 + Oz Oy Ty + Oy>? 4

(for a suitable choice of the unit normal) where all of the partial derivatives are evaluated at (0, 0).
Deduce that the Gaussian curvature at the origin is

o PIPL (1)
-~ 0x2 Oy oy?)

Now suppose that g : R? — R is another smooth function with g(0,0) = 0 and g(z,y) > f(z,y) for
every (z,y) € R%. Show that

dg dg
—(0,0)=0, =—(0,0)=0.
8:1; ( ) ) K ay ( ) )
Show further that
g 2 d%g d%g 2 D*f 2 D*f D*f 2
ZJ 9 Z T2 > 2 9 ZJ
a2 " * axay““+ay2” 92 " * axay“”+ay2“
at (0,0) and deduce that
829 9% a*f 9%
Ox2 dx Oy > Ox2 Ox dy
Ox Oy Oy? Ox Oy oy?

at (0,0).
Does this imply that the Gaussian curvature of the graph of g at the origin is greater than or equal
to the Gaussian curvature of the graph of f at the origin.

Please send any comment or corrections to t.k.carne@dpmms.cam.ac.uk .

Supervisors can obtain an annotated version of this ezample sheet from DPMMS.



