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(1) Let U be an open subset of R2 equipped with a Riemannian metric

E du2 + 2F du dv +Gdv2.

For P any point of U , prove that there exists λ > 0 and an open neighbourhood V of P
in U such that

(E − λ) du2 + 2F du dv + (G− λ) dv2

is a Riemannian metric on V . [Hint: A real matrix

(

a b
b c

)

is positive definite iff a > 0

and ac > b2.]

If U is path-connected, we define the distance between two points of U to be the
infinum of the lengths of curves joining them; prove that this defines a metric on U . Give
an example where this distance is not realized as the length of any curve joining them.

(2) We define a Riemannian metric on the unit disc D ⊂ C by (du2+dv2)/(1− (u2+ v2)).
Prove that the diameters (monotonically parametrized) are length minimizing curves for
this metric. Defining the distance between two points of D as in Question 1, show that
the distances in this metric are bounded, but that the areas are unbounded.

(3) We let V ⊂ R2 denote the square given by |u| < 1 and |v| < 1, and define two
Riemannian metrics on V given by

du2/(1− u2)2 + dv2/(1− v2)2, and du2/(1− v2)2 + dv2/(1− u2)2.

Prove that there is no isometry between the two spaces, but that an area-preserving dif-
feomorphism does exist.

[Hint: to prove that an isometry does not exist, show that in one space there are curves
of finite length going out to the boundary, whilst in the other space no such curves exist.]

(4) Let l denote the hyperbolic line in H given by a semicircle with centre a ∈ R and
radius r > 0. Show that the reflection Rl is given by the formula

Rl(z) = a+
r2

z̄ − a
.

(5) If a is a point of the upper half-plane, show that the Möbius transformation g given by

g(z) =
z − a

z − ā

defines an isometry from the upper half-plane model H to the disc model D of the hyper-
bolic plane, sending a to zero. Deduce that for points z1, z2 in the upper half-plane, the
hyperbolic distance is given by ρ(z1, z2) = 2 tanh−1

∣

∣

z1−z2

z1−z̄2

∣

∣.



(6) Suppose that z1, z2 are points in the upper half-plane, and suppose the hyperbolic line
through z1 and z2 meets the real axis at points z∗1 and z∗2 , where z1 lies on the hyperbolic
line segment z∗1z2, and where one of z∗1 and z∗2 might be ∞. Show that the hyperbolic
distance ρ(z1, z2) = log r, where r is the cross-ratio of the four points z∗1 , z1, z2, z

∗

2 , taken
in an appropriate order.

(7) Let C denote a hyperbolic circle of hyperbolic radius ρ in the upper half-plane model
of the hyperbolic plane; show that C is also a Euclidean circle. If C has hyperbolic centre
ic, find the radius and centre of C regarded as a Euclidean circle. Show that a hyperbolic
circle of hyperbolic radius ρ has hyperbolic area

A = 2π(cosh(ρ)− 1).

(8) Given two points P and Q in the hyperbolic plane, show that the locus of points
equidistant from P and Q is a hyperbolic line, the perpendicular bisector of the hyperbolic
line segment from P to Q.

(9) Show that any isometry g of the disc model D for the hyperbolic plane is either of
the form (for some a ∈ D and 0 ≤ θ < 2π):

g(z) = eiθ
z − a

1− āz
,

or of the form

g(z) = eiθ
z̄ − a

1− āz̄
.

(10) Prove that a convex hyperbolic n-gon with interior angles α1, . . . , αn has area

(n− 2)π −
∑

αi.

Show that for every n ≥ 3 and every α with 0 < α < (1− 2

n
)π, there is a regular n-gon all

of whose angles are α.

(11) Show that two hyperbolic lines have a common perpendicular if and only if they are
ultraparallel, and that in this case the perpendicular is unique. Given two ultraparallel
hyperbolic lines, prove that the composite of the corresponding reflections has infinite
order. [Hint: You may care to take the common perpendicular as a special line.]

(12) Fix a point P on the boundary of D, the disc model of the hyperbolic plane. Give
a description of the curves in D that are orthogonal to every hyperbolic line that passes
through P .

(13) Given two hyperbolic lines meeting at a point, show that the locus of points equidistant
from the two lines forms two further hyperbolic lines through the point. Show that in a
hyperbolic triangle, none of whose vertices are at infinity, the angle bisectors are concurrent.

(14) Let l be a hyperbolic line and P a point on l. Show that there is a unique hyperbolic
line l′ through P making an angle α with l (in a given sense). If α, β are positive numbers
with α + β < π, show that there exists a hyperbolic triangle (one vertex at infinity) with



angles 0, α and β. For any positive numbers α, β, γ, with α+ β + γ < π, show that there
exists a hyperbolic triangle with these angles. [Hint: For the last part, you may need a
continuity argument.]

(15) For arbitrary points z, w in C, prove the identity

|1− z̄w|2 = |z − w|2 + (1− |z|2)(1− |w|2).

Given points z, w in the unit disc model of the hyperbolic plane, prove the identity

sinh2(
1

2
ρ(z, w)) =

|z − w|2

(1− |z|2)(1− |w|2)
,

where ρ denotes the hyperbolic distance.

(16) Let 4 be a hyperbolic triangle, with angles α, β, γ, and sides of length a, b, c (the
side of length a being opposite the vertex with angle α, and similarly for b and c). Using
the result from Question 15, and the Euclidean cosine formula, prove the hyperbolic cosine
formula, namely

cosh c = cosh a cosh b − sinh a sinh b cos γ.

[For a slicker proof of this result, and of the corresponding hyperbolic sine formula, namely

sinh a

sinα
=

sinh b

sinβ
=

sinh c

sin γ
,

via the hyperboloid model of hyperbolic space, consult Curved Spaces, §5.7.]

Note to the reader : You should look at all the questions up to Question 12, and then
any further questions you have time for.


