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(1) Show the tangent space to S? at a point P = (x,%,2) € S? is the plane normal to the
vector O—f’, where O denotes the origin.

(2) Let V be the open subset {0 < u <, 0 <wv <27}, and 0 :V — S? be given by
o(u,v) = (sinu cosv,sinu sinv,cosu).

Prove that o defines a smooth parametrization on a certain open subset of S?. [You
may assume that cos~! is continuous on (—=1,1), and that tan~!, cot™! are continuous on
(_007 OO) ]

(3) Show the stereographic projection map 7 : S\ {N} — C, where N denotes the north
pole, defines a chart. Check that the spherical metric on S \ {/N} corresponds under 7 to
the Riemannian metric on C given by

A(da? +dy?*) /(1 +2® + )%

(4) For an embedded circular cylinder S in R3, show that the first fundamental form
corresponds to a locally Euclidean Riemannian metric on S. Identify the geodesics on S.

(5) Given a smooth curve I' : [0,1] — S on an abstract surface S with a Riemannian metric,
show that the length [ is unchanged under reparametrizations of the form f : [0,1] — [0, 1],
with f’(t) > 0 for all ¢ € [0,1]. Prove that there exists such a reparametrization I' = I' o f
for which ||dI'/dt|| is constant, namely [.

(6) Let T' denote the embedded torus in R3 obtained by revolving around the z-axis the
circle (z — 2)? 4+ 22 = 1 in the xz-plane. Using the formal definition of area in terms of a
parametrization, calculate the surface area of T.

(7) If one places S? inside a (vertical) circular cylinder of radius one, prove that the radial
(horizontal) projection map from S? to the cylinder preserves areas (this is usually known
as Archimedes Theorem). Deduce the existence of an atlas on S?, for which the charts all
preserve areas and the transition functions have derivatives with determinant one.

(8) Let S C R3 be the ellipsoid x2/a? + y2/b® + 22 /c* = 1. If V C R? denotes the region
u?/a? +v?/b? < 1, show that the map

o(u,v) = (u, v, c(1 —u2/a2 —02/b2)%)

determines a smooth parametrization of a certain open subset of S. Prove that the Gaus-
sian curvatures at the points (a,0,0),(0,b6,0),(0,0,c) are all equal if and only if S is a
sphere.



(9) For a surface of revolution S, corresponding to a curve n : (a,b) — R given by
n(u) = (f(u),0, g(u)), where 7 is parametrized in such a way that ||n’|| = 1, prove that the
second fundamental form at a given point is given by

(f/g// . f//g/)du2 4 fg'dvz.
Deduce that the Gaussian curvature K is given by the formula K = —f"/f.

(10) Using the results from the previous question, calculate the Gaussian curvature K of
the unit sphere. For the embedded torus, as defined in Question 6, identify those points
at which K = 0, K > 0 and K < 0. Verify the global Gauss—Bonnet theorem on the
embedded torus.

(11) Suppose we have a Riemannian metric of the form |dz|?/h(r)? on some open disc
D(0,6) centred at the origin in C (possibly all of C), where h(r) > 0 for all » < 4. Show
that the curvature K of this metric is given by the formula K = hh' — (h')? + hh//r.

(12) Let S be an embedded surface in R? which is closed and bounded. By considering the
smallest closed ball centred on the origin which contains S, or otherwise, show that the
Gaussian curvature must be strictly positive at some point of S. Deduce that the locally
Euclidean metric on the torus 7' cannot be realised as the first fundamental form for some
smooth embedding of 7" in R3.

(13) Show that Mercator’s parametrization of the sphere (minus poles)
o(u,v) = (sechu cosv,sechu sinwv,tanhw)

determines a chart (on the complement of a longitude) which preserves angles and sends
meridians and parallels on the sphere to straight lines in the plane.

(14) Show that a 2-holed torus may be obtained topologically by suitably identifying the
sides of a regular octagon. Indicate briefly how to extend your argument to show that a
g-holed torus may be obtained topologically by suitably identifying the sides of a regular
4g-gon?

Show that a g-holed torus (g > 1) may be given the structure of an abstract surface
with a Riemannian metric, in such a way that it is locally isometric to the hyperbolic
plane. [For this question, you will need the result from Q10 on Example Sheet 2.]

(15) Let f(u) = e*, g(u) = (1 — e2*)2 — cosh™ (e~ ), where u < 0, and S be the surface
of revolution corresponding to the curve 7 : (—o0o,0) — R3 given by n(u) = (f(u),0, g(u)).
Show that S has constant Gauss curvature —1; S'is called the pseudosphere. By considering
coordinates v and w = e~ on S, show that the pseudosphere is locally isometric to the
open subset of the upper half-plane model of the hyperbolic plane given by Im(z) > 1.
Identify the geodesics in this model corresponding to the meridians in S. Show that any
other geodesic in S has two distinct points of the circle 22 + 32 = 1,2z = 0 as limit points.

[It is a theorem that there are no complete embedded surfaces in R? with constant
negative Gauss curvature, and so in particular we cannot realise all of the hyperbolic plane
as an embedded surface.]

Note to the reader : You should look at all the questions up to Question 12, and then
any further questions you have time for.



