- (1) Let U be an open subset of \mathbb{R}^2 equipped with a Riemannian metric. Defining the distance between two points of U to be the infinum of the lengths of curves joining them, prove that this defines a metric on U. Give an example where this distance is not realized as the length of any curve joining P to Q.
- (2) We define a Riemannian metric on the unit disc $D \subset \mathbf{C}$ by $(du^2 + dv^2)/(1 (u^2 + v^2))$. Prove that the diameters (monotonically parametrized) are length minimizing curves for this metric. Defining the distance between two points of D as in Question 1, show that the distances in this metric are bounded, but that the areas are unbounded.
- (3) Suppose that z_1 , z_2 are points in the upper half-plane, and suppose the hyperbolic line through z_1 and z_2 meets the real axis at points z_1^* and z_2^* , where z_1 lies on the hyperbolic line segment $z_1^*z_2$, and where one of z_1^* and z_2^* might be ∞ . Show that the hyperbolic distance $\rho(z_1, z_2) = \log r$, where r is the cross-ratio of the four points z_1^*, z_1, z_2, z_2^* , taken in an appropriate order.
- (4) With z_1 , z_2 points in the upper half-plane,, use the formula for the metric on the unit disc to prove that the hyperbolic distance $\rho(z_1, z_2) = 2 \tanh^{-1} \left| \frac{z_1 z_2}{z_1 \bar{z}_2} \right|$.
- (5) Let C denote a hyperbolic circle of hyperbolic radius ρ in the upper half-plane model of the hyperbolic plane; show that C is also a Euclidean circle. If C has hyperbolic centre ic, find the radius and centre of C regarded as a Euclidean circle.
- (6) Show that a hyperbolic circle of hyperbolic radius ρ has hyperbolic area

$$A = 2\pi(\cosh(\rho) - 1).$$

[Note that A grows like πe^{ρ} , while a Euclidean circle of radius ρ has area $\pi \rho^2$.]

- (7) Given two points P and Q in the hyperbolic plane, show that the locus of points equidistant from P and Q is a hyperbolic line, the perpendicular bisector of the hyperbolic line segment from P to Q.
- (8) Given two hyperbolic lines meeting at a point, show that the locus of points equidistant from the two lines forms two further hyperbolic lines through the point. Show that in a hyperbolic triangle, none of whose vertices are at infinity, the angle bisectors are concurrent.
- (9) Show that any isometry g of the disc model D for the hyperbolic plane is **either** of the form (for some $a \in D$ and $0 \le \theta < 2\pi$):

$$g(z) = e^{i\theta} \frac{z - a}{1 - \bar{a}z},$$

or of the form

$$g(z) = e^{i\theta} \frac{\bar{z} - a}{1 - \bar{a}\bar{z}}.$$

(10) Prove that a convex hyperbolic *n*-gon with interior angles $\alpha_1, \ldots, \alpha_n$ has area

$$(n-2)\pi - \sum \alpha_i$$
.

Show that for every $n \ge 3$ and every α with $0 < \alpha < (1 - \frac{2}{n})\pi$, there is a regular n-gon all of whose angles are α .

- (11) Show that two hyperbolic lines have a common perpendicular if and only if they are ultraparallel, and that in this case the perpendicular is unique.
- (12) Fix a point P on the boundary of D, the disc model of the hyperbolic plane. Give a description of the curves in D that are orthogonal to every hyperbolic line that passes through P.
- (13) Let l be a hyperbolic line and P a point on l. Show that there is a unique hyperbolic line l' through P making an angle α with l. If α , β are positive numbers with $\alpha + \beta < \pi$, show that there exists a hyperbolic triangle (one vertex at infinity) with angles 0, α and β . For any positive numbers α , β , γ , with $\alpha + \beta + \gamma < \pi$, show that there exists a hyperbolic triangle with these angles. [Hint: For the last part, you may need a continuity argument.]
- (14) For arbitrary points z, w in \mathbb{C} , prove the identity

$$|1 - \bar{z}w|^2 = |z - w|^2 + (1 - |z|^2)(1 - |w|^2).$$

Given points z, w in the unit disc model of the hyperbolic plane, prove the identity

$$\sinh^{2}(\frac{1}{2}\rho(z,w)) = \frac{|z-w|^{2}}{(1-|z|^{2})(1-|w|^{2})},$$

where ρ denotes the hyperbolic distance.

(15) Let \triangle be a hyperbolic triangle, with angles α , β , γ , and sides of length a, b, c (the side of length a being opposite the vertex with angle α , and similarly for b and c). Using the result from Question 14, and the Euclidean cosine formula, prove the hyperbolic cosine formula, namely

 $\cosh c = \cosh a \cosh b - \sinh a \sinh b \cos \gamma$.

(16) Assuming the hyperbolic cosine formula for hyperbolic triangles, prove the hyperbolic sine formula, namely

$$\frac{\sinh a}{\sin \alpha} = \frac{\sinh b}{\sin \beta} = \frac{\sinh c}{\sin \gamma}.$$

[Hint: Reduce this to showing that $(\sinh a \sinh b)^2 - (\cosh a \cosh b - \cosh c)^2$ is symmetric in a, b and c.]

Deduce that $a \leq b \leq c$ if and only if $\alpha \leq \beta \leq \gamma$.

Note to the reader: You should look at all the questions up to Question 12, and then any further questions you have time for.