
Example Sheet 1, Geometry 2005 pmhw@dpmms.cam.ac.uk

(1) Suppose that H is a hyperplane in Euclidean n-space Rn defined by u ·x = c for some
unit vector u and constant c. The reflection in H is the map from Rn to itself given by
x 7→ x− 2(x · u− c)u. Show that this is an isometry. Letting P,Q be points of Rn, show
that there is a reflection in some hyperplane that maps P to Q.

(2) Suppose that l1 and l2 are non-parallel lines in the Euclidean plane R2, and that ri

denotes the reflection of R2 in the line li, for i = 1, 2. Show that the composite r1r2 is a
rotation of R2, and describe (in terms of the lines l1 and l2) the resulting fixed point and
the angle of rotation.

(3) Let R(P, θ) denote the clockwise rotation of R2 through an angle θ about a point P . If
A,B,C are the vertices, labelled clockwise, of a triangle in R2, prove that
R(A, θ)R(B,φ)R(C,ψ) is the identity if and only if θ = 2α, φ = 2β and ψ = 2γ, where
α, β, γ denote the angles at, respectively, the vertices A,B,C of the triangle ABC.

(4) By repeatedly applying the result from Question 1, when P is either 0 or one of the
standard basis vectors of Rn, deduce that any isometry T of Rn can be written as a
composition of at most n+ 1 reflections.

(5) Show from first principles that a curve of shortest length between two points in Eu-
clidean space is a straight line segment, parametrized monotonically.

(6) Prove that any isometry of the unit sphere is induced from an isometry of R3 which
fixes the origin. Prove that any matrix A ∈ O(3,R) is the product of at most three
reflections in planes through the origin. Deduce that an isometry of the unit sphere can be
expressed as the product of at most three reflections in spherical lines. What isometries
are obtained from the product of two reflections? What isometries are obtained from the
product of three reflections?

(7) Suppose that P is a point on the unit sphere S2. For fixed ρ, with 0 < ρ < π, the
spherical circle with centre P and radius ρ is the set of points Q ∈ S2 whose spherical
distance from P is ρ. Prove that a spherical circle of radius ρ on S2 has circumference
2π sin ρ and area 2π(1− cos ρ).

(8) Given a spherical line l on the sphere S2 and a point P not on l, show that there is
a spherical line l′ passing through P and intersecting l at right-angles. Prove that the
minimum distance d(P,Q) of P from a point Q on l is attained at one of the two points
of intersection of l with l′, and that l′ is unique if this minimum distance is less than π/2.

(9) Let π : S2 → C∞ denote the stereographic projection map. Show that the spherical
circles on S2 biject under π with the circles and straight lines on C.

(10) Show that any Möbius transformation T 6= 1 on C∞ has one or two fixed points.
Show that the Möbius transformation corresponding (under the stereographic projection
map) to a rotation of S2 through a non-zero angle has exactly two fixed points z1 and z2,
where z2 = −1/z̄1. If now T is a Möbius transformation with two fixed points z1 and z2
satisfying z2 = −1/z̄1, prove that either T corresponds to a rotation of S2, or one of the
fixed points, say z1, is an attractive fixed point, i.e. for z 6= z2, T

nz → z1 as n→∞.



(11) Prove that Möbius transformations of C∞ preserve cross-ratios. If u, v ∈ C correspond
to points P,Q on S2, and d denotes the angular distance from P to Q on S2, show that
−tan2 1

2
d is the cross ratio of the points u, v,−1/ū,−1/v̄, taken in an appropriate order

(which you should specify).

(12) Let M denote a convex polyhedron in R3, with F faces, E edges and V vertices.
Using the Gauss–Bonnet theorem for spherical triangles, prove that F −E + V = 2. Now
let M denote one of the five regular solids, and consider the radial projection map from
the centre of M to the sphere S2. In each case, identify the spherical polygon on S2 which
occurs as the image of a face of M .

(13) For every spherical triangle 4 = ABC, show that a < b+ c, b < c+ a, c < a+ b and
a + b + c < 2π. Conversely, show that for any three positive numbers a, b, c less than π
satisfying the above conditions, we have cos (b+ c) < cos a < cos (b− c), and that there
is a spherical triangle (unique up to isometries of S2) with those sides.

(14) A spherical triangle 4 = ABC has vertices given by unit vectors A, B and C in R3,
sides of length a, b, c, and angles α, β, γ (where the side opposite vertex A is of length
a and the angle at A is α, etc.). The polar triangle A′B′C ′ is defined by the unit vectors
in the directions B×C, C×A and A×B. Prove that the sides and angles of the polar
triangle are π−α, π−β and π−γ, and π−a, π−b, π−c respectively. Deduce the formula

sinα sinβ cos c = cos γ + cosα cosβ .

(15) Two spherical triangles 41,42 on a sphere S2 are said to be congruent if there is an
isometry of S that takes 41 to 42. Show that 41,42 are congruent if and only if they
have equal angles. What other conditions for congruence can you find?

Note to the reader : You should look at all the questions up to Question 12, and then
any further questions you have time for.


