Comments on and/or corrections to the questions on this sheet are always welcome, and may be emailed to me at hkrieger@dpmms.cam.ac.uk.

1. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a real linear map. Regarding T as a map from \mathbb{C} into \mathbb{C} , show that there exist unique complex numbers A, B such that for every $z \in \mathbb{C}$, $T(z) = Az + B\overline{z}$. Show that T is complex differentiable if and only if B = 0.

2. (i) Let $f: U \to \mathbb{C}$ be a holomorphic function on a domain U. Show that f is constant if any one of its real part, modulus or argument is constant.

- (ii) Find all entire functions of the form f(x+iy) = u(x) + iv(y) where u and v are real valued.
- (iii) Find all entire functions with real part $x^3 3xy^2$.
- **3**. Define $f : \mathbb{C} \to \mathbb{C}$ by f(0) = 0 and

$$f(z) = \frac{(1+i)x^3 - (1-i)y^3}{x^2 + y^2} \quad \text{for } z = x + iy \neq 0.$$

Show that f satisfies the Cauchy-Riemann equations at 0 but it not differentiable there.

4. (i) Denote by Log the principal branch of the logarithm. If $z \in \mathbb{C}$, show that $n \operatorname{Log}(1 + z/n)$ is defined if n is sufficiently large, and that it tends to z as n tends to ∞ . Deduce

$$\lim_{n \to \infty} \left(1 + \frac{z}{n} \right)^n = e^z \quad \text{for all } z \in \mathbb{C}.$$

(ii) Defining $z^{\alpha} = \exp(\alpha \operatorname{Log} z)$ for $\alpha \in \mathbb{C}$ and $z \notin \mathbb{R}_{\leq 0}$, show that $\frac{d}{dz} z^{\alpha} = \alpha z^{\alpha-1}$. Does $(zw)^{\alpha} = z^{\alpha} w^{\alpha}$ always hold?

- 5. (i) Verify directly that e^z , $\cos z$ and $\sin z$ satisfy the Cauchy-Riemann equations everywhere.
 - (ii) Find the set of complex numbers z for which $|e^{iz}| > 1$, and the set of those for which $|e^{z}| \le e^{|z|}$.
 - (iii) Find the zeros of $1 + e^z$ and of $\cosh z$.

6. Prove that each of the following series converges uniformly on the corresponding subset of \mathbb{C} :

(a)
$$\sum_{n=1}^{\infty} \sqrt{n}e^{-nz}$$
 on $\{z: 0 < r \le \operatorname{Re}(z)\};$ (b) $\sum_{n=1}^{\infty} \frac{2^n}{z^n + z^{-n}}$ on $\{z: |z| \le r < 1/2\}$.

- 7. Find conformal equivalences between the following pairs of domains:
 - (i) the sector $\{z \in \mathbb{C} \mid -\pi/4 < \arg(z) < \pi/4\}$ and the open unit disc D(0, 1);
 - (ii) the lens $\{z \in \mathbb{C} \mid |z-1| < \sqrt{2} \text{ and } |z+1| < \sqrt{2} \}$ and D(0,1);
 - (iii) the strip $S = \{z \in \mathbb{C} \mid 0 < \operatorname{Im}(z) < 1\}$ and the quadrant $Q = \{z \in \mathbb{C} \mid \operatorname{Re}(z) > 0 \text{ and } \operatorname{Im}(z) > 0\}.$

By considering a suitable bounded solution of Laplace's equation $u_{xx} + u_{yy} = 0$ on S, find a non-constant harmonic function on Q which is constant on its boundary axes.

8. (i) Show that the most general Möbius transformation which maps the unit disk onto itself has the form $z \mapsto \lambda \frac{z-a}{\bar{a}z-1}$, with |a| < 1 and $|\lambda| = 1$. [Hint: first show that these maps send the unit disk to itself, and use the that the composition of two Möbius maps fixing the unit disk is again a Möbius map fixing the unit disk.]

(ii) Find a Möbius transformation taking the region between the circles $\{|z| = 1\}$ and $\{|z - 1| = 5/2\}$ to an annulus $\{1 < |z| < R\}$. [*Hint: a circle can be described by an equation of the shape* $|z - a|/|z - b| = \ell$.]

(iii) Find a conformal map from an infinite strip onto an annulus. Can such a map be the restriction to the strip of a Möbius map?

9. Calculate $\int_{\gamma} z \sin z \, dz$ when γ is the straight line joining 0 to *i*.

10. Show that the following functions do not have antiderivatives (i.e. functions of which they are the derivatives) on the domains indicated:

(a)
$$\frac{1}{z} - \frac{1}{z-1}$$
 (0 < |z| < 1); (b) $\frac{z}{1+z^2}$ (1 < |z| < ∞).

11. Let $U \subset \mathbb{C}$ be a domain, and let $u : U \to \mathbb{R}$ be a C^2 harmonic function. Show that if $z_0 \in U$ then for any disk $D = D(z_0, r) \subset U$, there is a holomorphic function $f : D \to \mathbb{C}$ such that $u = \operatorname{Re}(f)$ on D. Show by an example that this need *not* hold globally; that is, there exists a choice of domain U and C^2 harmonic function u on U so that u is not the real part of any holomorphic function on U.