
COMPLEX ANALYSIS EXAMPLES 3, LENT 2021

Neshan Wickramasekera.

Please send comments, corrections to: n.wickramasekera@dpmms.cam.ac.uk.

1. The Weierstrass approximation theorem in real analysis says that every continuous func-
tion f : I → R on a compact interval I ⊂ R is the uniform limit of a sequence of polynomials.
The direct analogue of this to the complex setting (obtained by replacing R with C, I with a
compact set K ⊂ C and real polynomials with complex polynomials) is false, even if we make
a suitable holomorphicity assumption on f . Construct, for any given compact set K ⊂ C
with C \ K not connected, a function f that is holomorphic on an open set containing K
such that f is not the uniform limit on K of a sequence of complex polynomials. [Hint: you
may wish to generalise the idea of Q 13(ii) in sheet 1 for the construction, and use the global
maximum principle to prove it works.] Look up, on the other hand, Runge’s theorem and
Mergelyan’s theorem!

2. (a) Draw a (convincing!) picture of a domain Ω and a closed curve γ in Ω such that γ is
homologous to zero in Ω but is not null-homotopic in Ω. (The reverse direction, as proved
in lecture, is always true, i.e. if γ is null-homotopic in Ω, then it is homologous to zero in Ω).
(b) Let U be a domain with the property that every closed piecewise C1 curve in U is
homologous to zero in U.
(i) Use Cauchy’s theorem to show that if f is a nowhere vanishing holomorphic function on
U , then f admits a holomorphic square-root (i.e. there is a holomorphic function h such that
h2(z) = f(z) for every z ∈ U.)
(ii) The key ingredient of a standard proof of the Riemann mapping theorem is to show
that whenever a domain has the property that every nowhere zero holomorphic function
on it admits a holomorphic square-root, then it is homeomorphic to the open unit disk
(the non-trivial case of this being when the domain is not equal to C, in which case the
homeomorphism is in fact shown to be a conformal map). Assuming this, deduce that U is
simply connected, i.e. has the property that every closed curve in U is null-homotopic in U .
Thus a domain U is simply connected if and only if every closed curve in U is homologous
to zero in U .

3. (a) Let 0 ≤ r < R ≤ ∞, A = {r < |z| < R} and let f be holomorphic on A. Show that
there is a unique decomposition f = f1 + f2 such that f1 is holomorphic on {|z| < R}, f2 is
holomorphic on {|z| > r} and f2(z)→ 0 as z →∞.
(b) How does this extend to the case when A is a (bounded) domain between two non-
concentric disjoint circles? What about a domain bounded by three disjoint circles?

4. Use the residue theorem to give a proof of Cauchy’s derivative formula: if f is holomorphic
on D(a,R), and |w − a| < r < R, then

f (n)(w) =
n!

2πi

∫
∂ D(a,r)

f(z)

(z − w)n+1
dz.
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5. Let U be a domain in C ≈ R2 and let u : U → R be a C2 harmonic function.
(a) If U is simply connected, show that there is a holomorphic function f : U → C such
that u = Re f. (Hint: consider g = ∂u

∂x
− i∂u

∂y
).

(b) If U = D(a, r), show that

sup
z∈D(a,r/2)

|Du(z)| ≤ C

r
sup

z∈D(a,r)

|u|

where C is a fixed constant independent of U , u, r and a. (Here Du = (∂u
∂x
, ∂u
∂y

) and

|Du| =
√(

∂u
∂x

)2
+
(
∂u
∂y

)2
.)

(c) Now suppose U = D(0, 1) \ {0}. If u has a continuous extension to D(0, 1), show that
the point z = 0 is a removable singularity of u, i.e. show that the extended function is C2

and harmonic in D(0, 1).
(d) In (c), it suffices to assume that u is bounded on U . Does your proof generalise to this
case?
(e) In (c), does it suffice to assume limz→0 |z||u(z)| = 0? Compare with the case of holomor-
phic f : D(0, 1) \ {0} → C.

6. Evaluate the following integrals:

(a)

∫ π

0

dθ

4 + sin2 θ
; (b)

∫ ∞
0

sinx2 dx;

(c)

∫ ∞
0

x2

(x2 + 4)2(x2 + 9)
dx; (d)

∫ ∞
0

log (x2 + 1)

x2 + 1
dx.

7. For α ∈ (−1, 1) with α 6= 0, compute
∫∞
0

xα

x2+x+1
dx.

8. (i) For a positive integer N , let γN be the square contour with vertices (±1± i)(N +1/2).
Show that there exists C > 0 such that for every N , |cotπz| < C on γN .

(ii) By integrating
π cot πz

z2 + 1
around γN , show that

∑∞
n=0

1
n2+1

= 1+π cothπ
2

.

(iii) Evaluate
∑∞

n=0(−1)n/(n2 + 1).

9. Let f be holomorphic in an open set U except at a point a ∈ U and at a sequence of
points an ∈ U with an 6= a and an → a. Suppose that each an is a pole of f . Note that a is
then a non-isolated singularity. (i) Give an explicit example of such a function f , points an
and a. (ii) What can you say (in general) about the image f(U \ {a, a1, a2, . . .})?
10. Let fn be a sequence of holomorphic functions on a domain U converging locally uni-
formly to a function f : U → C. If fn(z) 6= 0 for each n and each z ∈ U , show that either
f(z) = 0 for all z ∈ U or f(z) 6= 0 for all z ∈ U. What if we allow each fn to have at most k
zeros in U for some fixed positive integer k independent of n?

11. Establish the following refinement of the Fundamental Theorem of Algebra. Let p(z) =
zn +an−1z

n−1 + · · ·+a0 be a polynomial of degree n, and let A = max{|ai| : 0 ≤ i ≤ n− 1}.
Then p(z) has n roots (counted with multiplicity) in the disk |z| < A+ 1.

12. If f : U → C is holomorphic and one-to-one, show that f ′(z) 6= 0 for all z ∈ U.
13. (i) Show that z4 + 12z + 1 = 0 has exactly three zeros with 1 < |z| < 4.
(ii) Prove that z5 + 2 + ez has exactly three zeros in the half-plane { z

∣∣ Re(z) < 0 }.
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(iii) Show that the equation z4 + z + 1 = 0 has one solution in each quadrant. Prove that
all solutions lie inside the circle { z : |z| = 3/2 }.
14. Let f be a function which is analytic on C apart from a finite number of poles. Show
that if there exists k such that |f(z)| ≤ |z|k for all z with |z| sufficiently large, then f is a
rational function (i.e. a quotient of two polynomials).

15. Show that the equation z sin z = 1 has only real solutions. [Hint: Find the number of
real roots in the interval [−(n+ 1/2)π, (n+ 1/2)π] and compare with the number of zeros of
z sin z − 1 is a square box {|Re z|, |Im z| < (n+ 1/2)π}.]
16. Let U be a domain, let f : U → C be holomorphic and suppose a ∈ U with f ′(a) 6= 0.
Show that for r > 0 sufficiently small,

g(w) =
1

2πi

∫
∂ D(a,r)

zf ′(z)

f(z)− w
dz

defines a holomorphic function g in a neighbourhood of f(a) which is inverse to f .

The following integrals are not part of the question sheet, but are provided as a starting
point for revision, or for the enthusiast.

(1)

∫ ∞
−∞

sinmx

x(a2 + x2)
dx where a, m ∈ R+;

(2)

∫ 2π

0

cos3 3t

1− 2a cos t+ a2
dt where a ∈ (0, 1);

(3)

∫ 1

−1

√
1− x2

1 + x2
dx (”dog-bone” contour);

(4)

∫ ∞
−∞

sinx

x
e−itx dx where t ∈ R.

(5) By integrating z/(a − e−iz) round the rectangle with vertices ±π, ±π + iR, prove
that ∫ π

0

x sinx

1− 2a cosx+ a2
dx =

π

a
log(1 + a)

for every a ∈ (0, 1).
(6) Assuming α ≥ 0 and β ≥ 0 prove that∫ ∞

0

cosαx− cos βx

x2
dx =

π

2
(β − α),

and deduce the value of ∫ ∞
0

(
sinx

x

)2

dx.


