
COMPLEX ANALYSIS EXAMPLES 3, LENT 2020

Neshan Wickramasekera.

Please send comments, corrections to: n.wickramasekera@dpmms.cam.ac.uk.

1. Let U be an open subset of C and let γ0, γ1 : [0, 1] → U be (piecewise C1) closed
curves. Recall that γ0 is said to be homotopic to γ1 in U if there is a continuous map H :
[0, 1]×[0, 1]→ U with H(0, t) = γ0(t), H(1, t) = γ1(t) for 0 ≤ t ≤ 1 and H(s, 0) = H(s, 1) for
0 ≤ s ≤ 1. Prove that if γ0 is homotopic to γ1, then I(γ0;w) = I(γ1;w) for each w ∈ C \ U.
[Hint: For each s, γs(t) = H(s, t), 0 ≤ t ≤ 1 is a closed continuous curve; consider, for a
sufficiently large fixed positive integer n, and k ∈ {0, 1, 2, . . . , n}, the polygonal curves γ̃k
defined by γ̃k(t) = γ k

n
( j
n
)(nt+ 1− j) + γ k

n
( j−1
n

)(j−nt) for j ∈ {1, 2, . . . , n} and j−1
n
≤ t ≤ j

n
.

Use the result of Q11(i), ex. sheet 2.]
Deduce that if a piecewise C1 curve in U is null-homotopic (i.e. homotopic in U to a

constant curve), then it is homologous to zero in U . Draw a picture of a domain U and a
curve in U that is homologous to zero in U but is not null-homotopic in U .

2. Recall that we defined a domain U ⊂ C to be a simply connected if every closed piecewise
C1 curve in U is homologous to zero in U , and proved Cauchy’s theorem for such domains.
Use Cauchy’s theorem to show that if U is simply connected and if f is a nowhere van-
ishing holomorphic function on U , then f admits a holomorphic square-root (i.e. there is a
holomorphic function h such that h2(z) = f(z) for every z ∈ U.)

The key ingredient of a standard proof of the Riemann mapping theorem is to show that if
a domain U 6= C has the property that every nowhere zero holomorphic f : U → C admits
a holomorphic square-root, then U is homeomorphic (in fact conformally equivalent) to the
open unit disk. Assuming this, deduce that every closed piecewise C1 curve in a simply
connected domain U is null-homotopic in U (in other words, U is simply connected also in
the sense of algebraic topology; so with the result of Q1 above, the two notions of simple
connectivity are equivalent).

3. The Weierstrass approximation theorem in real analysis says that every continuous func-
tion f : I → R on a compact interval I ⊂ R is the uniform limit of a sequence of polynomials.
The direct analogue of this to the complex setting (obtained by replacing R with C and I
with a compact set K ⊂ C) is false, even if we make a suitable holomorphicity assumption
on f . Construct, for any given compact set K ⊂ C with C \K not connected, a function f
that is holomorphic on an open set containing K such that f is not the uniform limit on K
of a sequence of complex polynomials. [Hint: you may wish to generalise the idea of Q 12(ii)
in sheet 1 for the construction, and use the global maximum principle to prove it works.]
Look up, on the other hand, Runge’s theorem and Mergelyan’s theorem!

4. Use the residue theorem to give a proof of Cauchy’s derivative formula: if f is holomorphic
on D(a,R), and |w − a| < r < R, then

f (n)(w) =
n!

2πi

∫
∂ D(a,r)

f(z)

(z − w)n+1
dz.
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5. Prove the following facts often found useful for computing integrals:
(i) Jordan’s lemma: If f is holomorphic on {|z| > r} for some r > 0, and if zf(z) is bounded
for |z| large, then for each α > 0,

∫
γR
f(z)eiαz dz → 0 as R → ∞, where γR(t) = Reit,

0 ≤ t ≤ π. [Use the fact that sin t
t
≥ 2

π
for 0 < t ≤ π

2
.]

(ii) If f has a simple pole at a, and if γε is the curve γε(t) = a + εeit, α ≤ t ≤ β, then∫
γε
f(z) dz → (β − α)iResf (a) as ε→ 0+.

6. Evaluate the following integrals:

(a)

∫ π

0

dθ

4 + sin2 θ
; (b)

∫ ∞
0

sinx2 dx;

(c)

∫ ∞
0

x2

(x2 + 4)2(x2 + 9)
dx; (d)

∫ ∞
0

log (x2 + 1)

x2 + 1
dx.

7. For α ∈ (−1, 1) with α 6= 0, compute
∫∞
0

xα

x2+x+1
dx.

8. (i) For a positive integer N , let γN be the square contour with vertices (±1± i)(N +1/2).
Show that there exists C > 0 such that for every N , |cotπz| < C on γN .

(ii) By integrating
π cot πz

z2 + 1
around γN , show that

∑∞
n=0

1
n2+1

= 1+π cothπ
2

.

(iii) Evaluate
∑∞

n=0(−1)n/(n2 + 1).

9. Let f be holomorphic in an open set U except at a point a ∈ U and at a sequence of
points an ∈ U converging to a. Suppose that each an is a pole of f . Note that a is then a
non-isolated singularity. (i) Give an explicit example of such a function f , points an and a.
(ii) What can you say (in general) about the image f(U \ {a, a1, a2, . . .})?

10. Let fn be a sequence of holomorphic functions on a domain U converging locally uni-
formly to a function f : U → C. If fn(z) 6= 0 for each n and each z ∈ U , show that either
f(z) = 0 for all z ∈ U or f(z) 6= 0 for all z ∈ U. What if we allow each fn to have at most k
zeros in U for some fixed positive integer k independent of n?

11. Establish the following refinement of the Fundamental Theorem of Algebra. Let p(z) =
zn +an−1z

n−1 + · · ·+a0 be a polynomial of degree n, and let A = max{|ai| : 0 ≤ i ≤ n− 1}.
Then p(z) has n roots (counted with multiplicity) in the disk |z| < A+ 1.

12. If f : U → C is holomorphic and one-to-one, show that f ′(z) 6= 0 for all z ∈ U.

13. (i) Show that z4 + 12z + 1 = 0 has exactly three zeros with 1 < |z| < 4.
(ii) Prove that z5 + 2 + ez has exactly three zeros in the half-plane { z

∣∣ Re(z) < 0 }.
(iii) Show that the equation z4 + z + 1 = 0 has one solution in each quadrant. Prove that
all solutions lie inside the circle { z : |z| = 3/2 }.

14. Let f be a function which is analytic on C apart from a finite number of poles. Show
that if there exists k such that |f(z)| ≤ |z|k for all z with |z| sufficiently large, then f is a
rational function (i.e. a quotient of two polynomials).

15. Show that the equation z sin z = 1 has only real solutions. [Hint: Find the number of
real roots in the interval [−(n+ 1/2)π, (n+ 1/2)π] and compare with the number of zeros of
z sin z − 1 is a square box {|Re z|, |Im z| < (n+ 1/2)π}.]
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16. Let U be a domain, let f : U → C be holomorphic and suppose a ∈ U with f ′(a) 6= 0.
Show that for r > 0 sufficiently small,

g(w) =
1

2πi

∫
∂ D(a,r)

zf ′(z)

f(z)− w
dz

defines a holomorphic function g in a neighbourhood of f(a) which is inverse to f .

The following integrals are not part of the question sheet, but are provided as a starting
point for revision, or for the enthusiast.

(1)

∫ ∞
−∞

sinmx

x(a2 + x2)
dx where a, m ∈ R+;

(2)

∫ 2π

0

cos3 3t

1− 2a cos t+ a2
dt where a ∈ (0, 1);

(3)

∫ 1

−1

√
1− x2

1 + x2
dx (”dog-bone” contour);

(4)

∫ ∞
−∞

sinx

x
e−itx dx where t ∈ R.

(5) By integrating z/(a − e−iz) round the rectangle with vertices ±π, ±π + iR, prove
that ∫ π

0

x sinx

1− 2a cosx+ a2
dx =

π

a
log(1 + a)

for every a ∈ (0, 1).
(6) Assuming α ≥ 0 and β ≥ 0 prove that∫ ∞

0

cosαx− cos βx

x2
dx =

π

2
(β − α),

and deduce the value of ∫ ∞
0

(
sinx

x

)2

dx.


