COMPLEX ANALYSIS EXAMPLES 3, LENT 2020

Neshan Wickramasekera.

Please send comments, corrections to: n.wickramasekera@dpmms.cam.ac.uk.

1. Let U be an open subset of $\mathbb C$ and let $\gamma_0, \gamma_1: [0,1] \to U$ be (piecewise C^1) closed curves. Recall that γ_0 is said to be homotopic to γ_1 in U if there is a continuous map $H: [0,1] \times [0,1] \to U$ with $H(0,t) = \gamma_0(t)$, $H(1,t) = \gamma_1(t)$ for $0 \le t \le 1$ and H(s,0) = H(s,1) for $0 \le s \le 1$. Prove that if γ_0 is homotopic to γ_1 , then $I(\gamma_0; w) = I(\gamma_1; w)$ for each $w \in \mathbb C \setminus U$. [Hint: For each $s, \gamma_s(t) = H(s,t)$, $0 \le t \le 1$ is a closed continuous curve; consider, for a sufficiently large fixed positive integer n, and $k \in \{0,1,2,\ldots,n\}$, the polygonal curves $\widetilde{\gamma}_k$ defined by $\widetilde{\gamma}_k(t) = \gamma_{\frac{k}{n}}(\frac{j}{n})(nt+1-j) + \gamma_{\frac{k}{n}}(\frac{j-1}{n})(j-nt)$ for $j \in \{1,2,\ldots,n\}$ and $\frac{j-1}{n} \le t \le \frac{j}{n}$. Use the result of Q11(i), ex. sheet 2.]

Deduce that if a piecewise C^1 curve in U is null-homotopic (i.e. homotopic in U to a constant curve), then it is homologous to zero in U. Draw a picture of a domain U and a curve in U that is homologous to zero in U but is not null-homotopic in U.

2. Recall that we defined a domain $U \subset \mathbb{C}$ to be a simply connected if every closed piecewise C^1 curve in U is homologous to zero in U, and proved Cauchy's theorem for such domains. Use Cauchy's theorem to show that if U is simply connected and if f is a nowhere vanishing holomorphic function on U, then f admits a holomorphic square-root (i.e. there is a holomorphic function h such that $h^2(z) = f(z)$ for every $z \in U$.)

The key ingredient of a standard proof of the Riemann mapping theorem is to show that if a domain $U \neq \mathbb{C}$ has the property that every nowhere zero holomorphic $f: U \to \mathbb{C}$ admits a holomorphic square-root, then U is homeomorphic (in fact conformally equivalent) to the open unit disk. Assuming this, deduce that every closed piecewise C^1 curve in a simply connected domain U is null-homotopic in U (in other words, U is simply connected also in the sense of algebraic topology; so with the result of Q1 above, the two notions of simple connectivity are equivalent).

- **3.** The Weierstrass approximation theorem in real analysis says that every continuous function $f:I\to\mathbb{R}$ on a compact interval $I\subset\mathbb{R}$ is the uniform limit of a sequence of polynomials. The direct analogue of this to the complex setting (obtained by replacing \mathbb{R} with \mathbb{C} and I with a compact set $K\subset\mathbb{C}$) is false, even if we make a suitable holomorphicity assumption on f. Construct, for any given compact set $K\subset\mathbb{C}$ with $\mathbb{C}\setminus K$ not connected, a function f that is holomorphic on an open set containing K such that f is not the uniform limit on K of a sequence of complex polynomials. [Hint: you may wish to generalise the idea of Q 12(ii) in sheet 1 for the construction, and use the global maximum principle to prove it works.] Look up, on the other hand, Runge's theorem and Mergelyan's theorem!
- **4.** Use the residue theorem to give a proof of Cauchy's derivative formula: if f is holomorphic on D(a, R), and |w a| < r < R, then

$$f^{(n)}(w) = \frac{n!}{2\pi i} \int_{\partial D(a,r)} \frac{f(z)}{(z-w)^{n+1}} dz.$$

- **5.** Prove the following facts often found useful for computing integrals:
- (i) Jordan's lemma: If f is holomorphic on $\{|z| > r\}$ for some r > 0, and if zf(z) is bounded for |z| large, then for each $\alpha > 0$, $\int_{\gamma_R} f(z)e^{i\alpha z} dz \to 0$ as $R \to \infty$, where $\gamma_R(t) = Re^{it}$, $0 \le t \le \pi$. [Use the fact that $\frac{\sin t}{t} \ge \frac{2}{\pi}$ for $0 < t \le \frac{\pi}{2}$.]

 (ii) If f has a simple pole at a, and if γ_{ϵ} is the curve $\gamma_{\epsilon}(t) = a + \epsilon e^{it}$, $\alpha \le t \le \beta$, then
- $\int_{\gamma_{\epsilon}} f(z) dz \to (\beta \alpha) i \operatorname{Res}_f(a) \text{ as } \epsilon \to 0^+.$
- **6**. Evaluate the following integrals:

(a)
$$\int_0^\pi \frac{d\theta}{4 + \sin^2 \theta};$$
 (b) $\int_0^\infty \sin x^2 dx;$ (c) $\int_0^\infty \frac{x^2}{(x^2 + 4)^2 (x^2 + 9)} dx;$ (d) $\int_0^\infty \frac{\log (x^2 + 1)}{x^2 + 1} dx.$

- 7. For $\alpha \in (-1,1)$ with $\alpha \neq 0$, compute $\int_0^\infty \frac{x^\alpha}{x^2+x+1} dx$.
- 8. (i) For a positive integer N, let γ_N be the square contour with vertices $(\pm 1 \pm i)(N+1/2)$. Show that there exists C > 0 such that for every N, $|\cot \pi z| < C$ on γ_N .
- (ii) By integrating $\frac{\pi \cot \pi z}{z^2 + 1}$ around γ_N , show that $\sum_{n=0}^{\infty} \frac{1}{n^2 + 1} = \frac{1 + \pi \coth \pi}{2}$. (iii) Evaluate $\sum_{n=0}^{\infty} (-1)^n / (n^2 + 1)$.
- **9**. Let f be holomorphic in an open set U except at a point $a \in U$ and at a sequence of points $a_n \in U$ converging to a. Suppose that each a_n is a pole of f. Note that a is then a non-isolated singularity. (i) Give an explicit example of such a function f, points a_n and a. (ii) What can you say (in general) about the image $f(U \setminus \{a, a_1, a_2, \ldots\})$?
- 10. Let f_n be a sequence of holomorphic functions on a domain U converging locally uniformly to a function $f:U\to\mathbb{C}$. If $f_n(z)\neq 0$ for each n and each $z\in U$, show that either f(z) = 0 for all $z \in U$ or $f(z) \neq 0$ for all $z \in U$. What if we allow each f_n to have at most kzeros in U for some fixed positive integer k independent of n?
- 11. Establish the following refinement of the Fundamental Theorem of Algebra. Let p(z) = $z^n + a_{n-1}z^{n-1} + \cdots + a_0$ be a polynomial of degree n, and let $A = \max\{|a_i|: 0 \le i \le n-1\}$. Then p(z) has n roots (counted with multiplicity) in the disk |z| < A + 1.
- **12.** If $f:U\to\mathbb{C}$ is holomorphic and one-to-one, show that $f'(z)\neq 0$ for all $z\in U$.
- 13. (i) Show that $z^4 + 12z + 1 = 0$ has exactly three zeros with 1 < |z| < 4.
- (ii) Prove that $z^5 + 2 + e^z$ has exactly three zeros in the half-plane $\{z \mid \text{Re}(z) < 0\}$.
- (iii) Show that the equation $z^4 + z + 1 = 0$ has one solution in each quadrant. Prove that all solutions lie inside the circle $\{z: |z| = 3/2\}.$
- 14. Let f be a function which is analytic on \mathbb{C} apart from a finite number of poles. Show that if there exists k such that $|f(z)| \leq |z|^k$ for all z with |z| sufficiently large, then f is a rational function (i.e. a quotient of two polynomials).
- 15. Show that the equation $z \sin z = 1$ has only real solutions. [Hint: Find the number of real roots in the interval $[-(n+1/2)\pi, (n+1/2)\pi]$ and compare with the number of zeros of $z \sin z - 1$ is a square box $\{|\text{Re } z|, |\text{Im } z| < (n + 1/2)\pi\}.$

16. Let U be a domain, let $f: U \to \mathbb{C}$ be holomorphic and suppose $a \in U$ with $f'(a) \neq 0$. Show that for r > 0 sufficiently small,

$$g(w) = \frac{1}{2\pi i} \int_{\partial D(a,r)} \frac{zf'(z)}{f(z) - w} dz$$

defines a holomorphic function g in a neighbourhood of f(a) which is inverse to f.

The following integrals are *not* part of the question sheet, but are provided as a starting point for revision, or for the enthusiast.

(1)
$$\int_{-\infty}^{\infty} \frac{\sin mx}{x(a^2 + x^2)} dx \qquad \text{where } a, \ m \in \mathbb{R}^+$$

(1)
$$\int_{-\infty}^{\infty} \frac{\sin mx}{x(a^2 + x^2)} dx$$
 where $a, m \in \mathbb{R}^+$;
(2) $\int_{0}^{2\pi} \frac{\cos^3 3t}{1 - 2a\cos t + a^2} dt$ where $a \in (0, 1)$;

(3)
$$\int_{-1}^{1} \frac{\sqrt{1-x^2}}{1+x^2} dx$$
 ("dog-bone" contour);
(4)
$$\int_{-\infty}^{\infty} \frac{\sin x}{x} e^{-itx} dx$$
 where $t \in \mathbb{R}$.

(4)
$$\int_{-\infty}^{\infty} \frac{\sin x}{x} e^{-itx} dx \qquad \text{where } t \in \mathbb{R}$$

(5) By integrating $z/(a-e^{-iz})$ round the rectangle with vertices $\pm \pi$, $\pm \pi + iR$, prove that

$$\int_0^{\pi} \frac{x \sin x}{1 - 2a \cos x + a^2} \, dx = \frac{\pi}{a} \log(1 + a)$$

for every $a \in (0,1)$.

(6) Assuming $\alpha \geq 0$ and $\beta \geq 0$ prove that

$$\int_0^\infty \frac{\cos \alpha x - \cos \beta x}{x^2} \, dx = \frac{\pi}{2} (\beta - \alpha),$$

and deduce the value of

$$\int_0^\infty \left(\frac{\sin x}{x}\right)^2 dx.$$