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Comments and/or corrections are welcome at any time and can be emailed to me at
a.g.kovalev@dpmms.cam.ac.uk.

1. Let f be a holomorphic function on a punctured disc D∗(a,R) = {0 < |z − a| < R} and let γ
be a closed curve in D∗(a,R). Show that∫

γ
f(z) dz = 2πi n(γ, a) Res

a
f.

2. Let g(z) = p(z)/q(z) be a rational function, such that deg q ≥ 2 + deg p. Show that the sum
of residues of g at all its singularities is zero.

3. Evaluate the following integrals:

(a)

∫ π

0

dθ

4 + sin2 θ
; (c)

∫ ∞
−∞

sinµx

x(a2 + x2)
dx , where a > 0, µ > 0 ;

(b)

∫ ∞
0

x2

(x2 + 4)2(x2 + 9)
dx ; (d)

∫ ∞
0

ln(x2 + 1)

x2 + 1
dx.

4. For α ∈ (−1, 1) with α 6= 0 compute∫ ∞
0

xα

x2 + x+ 1
dx.

5. Use Rouche’s Theorem to prove the following refinement of the Fundamental Theorem of
Algebra. Let p(z) = zn+an−1z

n−1 + . . .+a0 be a polynomial of degree n, and let A = max{|ai| :
0 ≤ i ≤ n− 1}. Then p has n roots (counted with multiplicity) in the disc {|z| < A+ 1}.

6. Let p(z) = z5 + z. Find all z such that |z| = 1 and Im p(z) = 0. Calculate Re p(z) for such z.
Hence sketch the curve p ◦ γ, where γ(t) = e2πit, and use your sketch to determine the number
of z (counted with multiplicity), such that |z| < 1 and p(z) = x for each real value x.

7. (i) Show that z4 + 12z+ 1 has exactly three zeros in the annulus {z ∈ C : 1 < |z| < 4}. Show
that these zeros are distinct.

(ii) Prove that z5 + 2 + ez has exactly three zeros in the half-plane {z ∈ C : Re z < 0}.
(iii) Show that the equation z4 + z + 1 = 0 has one solution in each quadrant. Prove that all
solutions lie inside the circle {z : |z| = 3/2}.

8. Suppose that f is holomorphic on some open disc containing {|z| ≤ 1} and satisfies |f(z)| < 1
when |z| = 1. Show that there is exactly one complex number w, such that |w| < 1 and f(w) = w.

9. (Inverse function formula for holomorphic functions.) Let f be an analytic function on a disc
D(a,R), such that f ′(a) 6= 0. Show that for sufficiently small r > 0 the formula

g(w) =
1

2πi

∫
|z−a|=r

z
f ′(z)

f(z)− w
dz

defines a holomorphic function on some neighbourhood of f(a) which is inverse to f .



10. Prove that the equation z sin z = 1 has only real roots.

[Hint: find the number of real roots in the interval [−(n+ 1/2)π, (n+ 1/2)π] and compare with
the number of zeros of z sin z − 1 in the disc {|z| < (n+ 1/2)π}.]

11. (i) For a positive integer N , let γN be the square contour with vertices (±1± i)(N + 1/2).
Show that there exists C > 0 such that for every N , | cotπz| < C on γN .

(ii) By integrating
π cotπz

z2 + 1
around γN , show that

∞∑
n=0

1

n2 + 1
=

1 + π cothπ

2
.

(iii) Evaluate
∑∞

n=0(−1)n/(n2 + 1).

The following is not part of the example sheet, but may be added to revision or used as optional
extras for enthusiasts.

(A1) Evaluate:

(i)

∫ ∞
0

sinx2 dx ;

(ii)

∫ ∞
0

xαdx

(x+ a)(x+ 2a)
, for −1 < α < 1, a > 0 ;

(iii)

∫ ∞
−∞

sinx

x
e−itx dx, where t ∈ R ;

(iv)

∫ 1

−1

√
1− x2

1 + x2
dx (‘dog-bone’ contour).

(A2) By integrating
z

a− e−iz
around the rectangle with vertices ±π, ±π + iR, prove that∫ π

0

x sinx

1− 2a cosx+ a2
dx =

π

a
log(1 + a) , for 0 < a < 1.

(A3) (i) Show that the Taylor expansion of z/(ez − 1) near the origin has the form

1− z

2
+
∞∑
k=1

(−1)k−1Bk
(2k)!

z2k ,

where the numbers Bk (the Bernoulli numbers) are rational.

(ii) If k is a positive integer show that
∞∑
n=1

1

n2k
=

22k−1π2kBk
(2k)!

.


