COMPLEX ANALYSIS EXAMPLES 3

G.P. Paternain Lent 2017

Comments on and/or corrections to the questions on this sheet are always welcome, and may be e-mailed to me at g.p.paternain@dpmms.cam.ac.uk.

1. Use the residue theorem to give a proof of Cauchy's derivative formula: if f is holomorphic on D(a, R), and |w - a| < r < R, then

$$f^{(n)}(w) = \frac{n!}{2\pi i} \int_{|z-a|=r} \frac{f(z)}{(z-w)^{n+1}} \, dz.$$

2. Let g(z) = p(z)/q(z) be a rational function with $\deg(q) \ge \deg(p) + 2$. Show that the sum of the residues of g at all its poles equals zero.

3. Evaluate the following integrals:

(a)
$$\int_0^{\pi} \frac{d\theta}{4 + \sin^2 \theta};$$
 (b) $\int_0^{\infty} \sin x^2 dx;$
(c) $\int_0^{\infty} \frac{x^2}{(x^2 + 4)^2 (x^2 + 9)} dx;$ (d) $\int_0^{\infty} \frac{\log (x^2 + 1)}{x^2 + 1} dx.$

4. For $\alpha \in (-1, 1)$ with $\alpha \neq 0$, compute

$$\int_0^\infty \frac{x^\alpha}{x^2 + x + 1} \, dx$$

5. Establish the following refinement of the Fundamental Theorem of Algebra. Let $p(z) = z^n + a_{n-1}z^{n-1} + \cdots + a_0$ be a polynomial of degree n, and let $A = \max\{|a_i|: 0 \le i \le n-1\}$. Then p(z) has n roots (counted with multiplicity) in the disk |z| < A + 1.

6. Let $p(z) = z^5 + z$. Find all z such that |z| = 1 and Im p(z) = 0. Calculate Re p(z) for such z. Hence sketch the curve $p \circ \gamma$, where $\gamma(t) = e^{2\pi i t}$ and use your sketch to determine the number of z (counted with multiplicity) such that |z| < 1 and p(z) = x for each real number x.

7. (i) For a positive integer N, let γ_N be the square contour with vertices $(\pm 1 \pm i)(N + 1/2)$. Show that there exists C > 0 such that for every N, $|\cot \pi z| < C$ on γ_N .

(ii) By integrating $\frac{\pi \cot \pi z}{z^2 + 1}$ around γ_N , show that

$$\sum_{n=0}^{\infty} \frac{1}{n^2 + 1} = \frac{1 + \pi \coth\pi}{2}.$$

(iii) Evaluate $\sum_{n=0}^{\infty} (-1)^n / (n^2 + 1)$.

8. (i) Show that $z^4 + 12z + 1 = 0$ has exactly three zeros with 1 < |z| < 4.

(ii) Prove that $z^5 + 2 + e^z$ has exactly three zeros in the half-plane $\{z \mid \operatorname{Re}(z) < 0\}$.

(iii) Show that the equation $z^4 + z + 1 = 0$ has one solution in each quadrant. Prove that all solutions lie inside the circle $\{z : |z| = 3/2\}$.

9. (i) Let $w \in \mathbb{C}$, and let γ , $\delta \colon [0,1] \to \mathbb{C}$ be closed curves such that for all $t \in [0,1]$, $|\gamma(t) - \delta(t)| < |\gamma(t) - w|$. By computing the winding number of the closed curve

$$\sigma(t) = \frac{\delta(t) - w}{\gamma(t) - w}$$

about the origin, show that $I(\gamma; w) = I(\delta; w)$.

(ii) If $w \in \mathbb{C}$, r > 0, and γ is a closed curve which does not meet D(w, r), show that $I(\gamma; w) = I(\gamma; z)$ for every $z \in D(w, r)$.

(iii) Deduce that if γ is a closed curve in \mathbb{C} and U is the complement of (the image of) γ , then the function $w \mapsto I(\gamma; w)$ is a locally constant function on U.

10. Show that the equation $z \sin z = 1$ has only real solutions. [Hint: Find the number of real roots in the interval $[-(n+1/2)\pi, (n+1/2)\pi]$ and compare with the number of zeros of $z \sin z - 1$ is a square box $\{|\text{Re } z|, |\text{Im } z| < (n+1/2)\pi\}$.]

11. Let U be a domain, let $f: U \to \mathbb{C}$ be holomorphic and suppose $a \in U$ with $f'(a) \neq 0$. Show that for r > 0 sufficiently small,

$$g(w) = \frac{1}{2\pi i} \int_{|z-a|=r} \frac{zf'(z)}{f(z) - w} \, dz$$

defines a holomorphic function g in a neighbourhood of f(a) which is inverse to f.

The following integrals are *not* part of the question sheet, but are provided as a starting point for revision, or for the enthusiast.

- (1) $\int_{-\infty}^{\infty} \frac{\sin mx}{x(a^2 + x^2)} dx \quad \text{where } a, \ m \in \mathbb{R}^+;$ (2) $\int_{0}^{2\pi} \frac{\cos^3 3t}{1 - 2a\cos t + a^2} dt \quad \text{where } a \in (0, 1);$ (3) $\int_{-1}^{1} \frac{\sqrt{1 - x^2}}{1 + x^2} dx \quad (\text{"dog-bone" contour});$ (4) $\int_{-\infty}^{\infty} \frac{\sin x}{x} e^{-itx} dx \quad \text{where } t \in \mathbb{R}.$
- (5) By integrating $z/(a e^{-iz})$ round the rectangle with vertices $\pm \pi$, $\pm \pi + iR$, prove that

$$\int_0^{\pi} \frac{x \sin x}{1 - 2a \cos x + a^2} \, dx = \frac{\pi}{a} \log(1 + a)$$

for every $a \in (0, 1)$.

(6) Assuming $\alpha \geq 0$ and $\beta \geq 0$ prove that

$$\int_0^\infty \frac{\cos \alpha x - \cos \beta x}{x^2} \, dx = \frac{\pi}{2} (\beta - \alpha),$$

and deduce the value of

$$\int_0^\infty \left(\frac{\sin x}{x}\right)^2 dx.$$