Complex Analysis IB: 2015-16 - Sheet 2

Let $B(a; \epsilon)$ denote the open ball $\{z \in \mathbb{C} : |z - a| < \epsilon\}$.

- 1. The Weierstrass approximation theorem states that any continuous function $f: I \to \mathbb{R}$ on a closed bounded connected subset $I \subset \mathbb{R}$ can be uniformly approximated by polynomials. Can any continuous function $\phi: J \to \mathbb{C}$ on a closed bounded connected subset $J \subset \mathbb{C}$ be uniformly approximated by polynomials? Justify your answer.
- 2. (i) Using the Cauchy integral formula, compute $\int_{|z|=2} \frac{1}{z^2+1} dz$ and $\int_{|z|=2} \frac{1}{z^2-1} dz$.
 - (ii) If p(z) is a polynomial with distinct roots $\{a_j\}$, what is the maximum conceivable number of distinct values that $\int_{\gamma} \frac{1}{p(z)} dz$ can take, as γ varies over (piecewise C^1 -smooth) simple closed curves disjoint from the $\{a_j\}$? [You are not asked to provide a polynomial p for which this theoretical maximum is realised.]
- 3. (i) For $\alpha \in \mathbb{C}$, use the Cauchy integral formula to compute

$$\int_{|z|=1} \frac{e^{\alpha z}}{2z^2 - 5z + 2} \, dz.$$

(ii) By considering suitable complex integrals, show that

$$\int_0^\pi \frac{\cos n\theta}{1 - 2r\cos\theta + r^2} d\theta = \frac{\pi r^n}{1 - r^2} \ \forall \ r \in (0, 1); \quad \text{and} \quad \int_0^{2\pi} \cos(\cos\theta) \cosh(\sin\theta) d\theta \ = \ 2\pi.$$

- 4. Let f be an entire function.
 - (i) If $f(z)/z \to 0$ as $|z| \to \infty$, prove that f is constant. (This strengthens Liouville's theorem.)
 - (ii) If for some $a \in \mathbb{C}$ and $\epsilon > 0$, f never takes values in $B(a; \epsilon)$, show that f is constant.
 - (iii) If f = u + iv and |u| > |v| throughout \mathbb{C} , show that f is constant.
- 5. Let U be a domain and $f:U\to\mathbb{C}$ be holomorphic. If the real part $\mathrm{Re}(f)$ has an interior local maximum at $a\in U$, show that f is constant.
- 6. (i) Let f be an entire function. Show that f is a polynomial, of degree $\leq k$, if and only if there is a constant M for which $|f(z)| < M(1+|z|)^k$ for all z.
 - (ii) Show that an entire function f is a polynomial if and only if $|f(z)| \to \infty$ as $|z| \to \infty$.
 - (iii) Let f be a function which is holomorphic on \mathbb{C} apart from a finite number of poles. Show that if there exists k such that $|f(z)| \leq |z|^k$ for all z with |z| sufficiently large, then f is a rational function (i.e. a quotient of two polynomials).
- 7. (i) (Schwarz's Lemma) Let f be holomorphic on the open unit disk B(0;1), satisfying $|f(z)| \le 1$ and f(0) = 0. By applying the maximum principle to f(z)/z, show that $|f(z)| \le |z|$. Show also that if |f(w)| = |w| for some $w \ne 0$ then f(z) = cz for some constant c.
 - (ii) Use Schwarz's Lemma to prove that any conformal equivalence from the unit disk to itself is given by a Möbius transformation.

- 8. (i) Let $f: \mathbb{C} \to \mathbb{C}$ be holomorphic. If f(1/n) = 1/n for each $n \in \mathbb{Z}_{>0}$, show that f(z) = z.
 - (ii) Let $f: \mathbb{C} \to \mathbb{C}$ be holomorphic. If $f(n) = n^2$ for every $n \in \mathbb{Z}$, must $f(z) = z^2$?
 - (iii) Let f be holomorphic on B(0;2). Show that $f(1/n) \neq 1/(n+1)$ for some $n \in \mathbb{Z}_{>0}$.
- 9. (i) Give an example of an infinitely differentiable function $f:(-1,1)\to\mathbb{R}$ which can be extended to a holomorphic function on a domain $(-1,1)\subset U\subset\mathbb{C}$, but for which one cannot take U to be the open unit disc B(0;1).
 - (ii) Give an example of an infinitely differentiable function $f:(-1,1)\to\mathbb{R}$ which is not the restriction of any holomorphic function defined on a domain $(-1,1)\subset U\subset\mathbb{C}$.
 - (iii) Prove that the integral $\int_0^\infty e^{-zt} \sin(t) \, dt$ converges for Re(z) > 0 and defines a holomorphic function in that half-plane. Prove furthermore that the resulting holomorphic function admits an analytic continuation to $\mathbb{C}\setminus\{\pm i\}$.
 - (iv) Prove that the series $\sum_{n=0}^{\infty} z^{(2^n)}$ defines a holomorphic function on the disc B(0;1) which admits no analytic continuation to any larger domain $B(0;1) \subsetneq U \subset \mathbb{C}$.
- 10. Find the Laurent expansion (in powers of z) of $1/(z^2-3z+2)$ in each of the regions:

$$\{z \mid |z| < 1\}; \quad \{z \mid 1 < |z| < 2\}; \quad \{z \mid |z| > 2\}.$$

11. Classify the singularities of each of the following functions:

$$\frac{1}{z^2} + \frac{1}{z^2 + 1}, \qquad \frac{z}{\sin z}, \qquad \sin \frac{\pi}{z^2}, \qquad \frac{1}{z^2} \cos \left(\frac{\pi z}{z + 1}\right).$$

12. (Casorati-Weierstrass theorem) Let f be holomorphic on $B(a;r) \setminus \{a\}$ with an essential singularity at z=a. Show that for any $b \in \mathbb{C}$, there exists a sequence of points $z_n \in B(a;r)$ with $z_n \neq a$ such that $z_n \to a$ and $f(z_n) \to b$ as $n \to \infty$.

Find such a sequence when $f(z) = e^{1/z}$, a = 0 and b = 2.

[A much harder theorem of Picard says that in any neighbourhood of an essential singularity, a holomorphic function takes *every* complex value except possibly one.]

Ivan Smith is 200@cam.ac.uk