Complex Analysis IB - 2013 - Sheet 3

The symbols $\Re(z)$ and $\Im(z)$ denote the real respectively imaginary parts of z.

- 1. Let f be a meromorphic function on \mathbb{C} for which $|f(z)| \to \infty$ as $|z| \to \infty$. Show that f cannot have poles at all integer points.
- 2. Let g(z) = p(z)/q(z) be a rational function with $deg(q) \ge deg(p) + 2$. Show that the sum of the residues of g over all its singularities is zero.
- 3. Prove that the group of conformal automorphisms of the Riemann sphere $\mathbb{C} \cup \{\infty\} = \mathbb{CP}^1$ is the Möbius group. [Hint: take an automorphism g fixing 0 and ∞ and consider $z \mapsto g(z)/z$.]
- 4. Evaluate the following:

(a)
$$\int_0^{\pi} \frac{d\theta}{4 + \sin^2 \theta}$$
; (b) $\int_0^{\infty} \frac{x^2 dx}{(x^2 + 4)^2 (x^2 + 9)}$;
(c) $\int_0^{\infty} \sin x^2 dx$; (d) $\int_0^{\infty} \frac{\ln (x^2 + 1)}{x^2 + 1} dx$.

5. For $-1 < \alpha < 1$ and $\alpha \neq 0$, compute

$$\int_0^\infty \frac{x^\alpha}{1+x+x^2} \, dx.$$

Letting $\alpha \to 0$, compute

$$\int_0^\infty \frac{1}{1+x+x^2} \, dx.$$

- 6. Establish the following refinement of the Fundamental Theorem of Algebra. Let $p(z) = z^n + a_{n-1}z^{n-1} + \cdots + a_0$ be a polynomial of degree n, and let $A = \max\{|a_i|, 0 \le i \le n-1\}$. Then p(z) has n roots (counted with multiplicity) in the disk $\{|z| < A+1\}$.
- 7. Let $p(z)=z^5+z$. Find all z such that |z|=1 and $\Im p(z)=0$. Calculate $\Re p(z)$ for such z. Sketch the curve $p\circ\gamma$, where $\gamma(t)=e^{2\pi it}$, and hence determine the number of z (counted with multiplicity) such that |z|<1 and p(z)=x for each $x\in\mathbb{R}$.
- 8. (i) For a positive integer N, let γ_N be the square contour with vertices $(\pm 1 \pm i)(N + 1/2)$. Show that there exists C > 0 such that for every N, $|\cot \pi z| < C$ on γ_N .
 - (ii) By integrating $\frac{\pi \cot \pi z}{z^2 + 1}$ around γ_N , show that

$$\sum_{n=0}^{\infty} \frac{1}{n^2 + 1} = \frac{1 + \pi \coth \pi}{2}.$$

(iii) Evaluate $\sum_{n=0}^{\infty} (-1)^n/(n^2+1)$.

9. Show that the Taylor expansion of $z/(e^z-1)$ near the origin has the form

$$1 - \frac{z}{2} + \sum_{k=1}^{\infty} \frac{(-1)^{k-1} B_n}{(2k)!} z^{2k}$$

where the numbers B_k (the Bernoulli numbers) are rational.

- 10. (i) Show that $z^4 + 12z + 1$ has exactly three zeroes in the annulus $\{1 < |z| < 4\}$.
 - (ii) Prove that $z^5 + 2 + e^z$ has exactly three zeros in the half-plane $\{z \mid \Re(z) < 0\}$.
 - (iii) Show that the equation $z^4 + z + 1 = 0$ has one solution in each quadrant. Prove that all solutions lie inside the circle $\{z \mid |z| = 3/2\}$.
- 11. Show that the equation $z \sin z = 1$ has only real solutions.

[Hint: Find the number of real roots in the interval $[-(n+1/2)\pi, (n+1/2)\pi]$ and compare with the number of zeroes of $z \sin z - 1$ in a square box $\{|\Re(z)|, |\Im(z)| < (n+1/2)\pi\}$.]

11* (Additional) Let $f: U \to \mathbb{C}$ be holomorphic and suppose $a \in U$ with $f'(a) \neq 0$. Show that for r > 0 sufficiently small,

$$g(w) = \frac{1}{2\pi i} \int_{|z-a|=r} \frac{zf'(z)}{f(z)-w} dz$$

defines a holomorphic function g in a neighbourhood of f(a) which is inverse to f.

The following integrals are *not* part of the question sheet, but may provide a good start for revision or a first port of call for the addicted.

(i)
$$\int_{-\infty}^{\infty} \frac{\sin mx}{x(a^2 + x^2)} dx$$
 where $a, m \in \mathbb{R}^+$; (ii) $\int_{0}^{2\pi} \frac{\cos^3 3t}{1 - 2a\cos t + a^2} dt$ where $a \in (0, 1)$;

$$(iii) \quad \int_{-\infty}^{\infty} e^{-ax^2} e^{-itx} \, dx \quad \text{where } a > 0, t \in \mathbb{R}; \qquad (iv) \quad \int_{-\infty}^{\infty} \frac{\sin x}{x} e^{-itx} \, dx, \quad \text{where } t \in \mathbb{R}.$$

(v) By integrating $z/(a-e^{-iz})$ round the rectangle with vertices $\pm \pi$, $\pm \pi + iR$, prove that

$$\int_0^\pi \frac{x \sin x}{1 - 2a \cos x + a^2} \, dx = \frac{\pi}{a} \log(1 + a) \quad \text{for } a \in (0, 1).$$

(vi) Assuming $\alpha \geq 0$ and $\beta \geq 0$ prove that

$$\int_0^\infty \frac{\cos \alpha x - \cos \beta x}{x^2} \, dx = \frac{\pi}{2} (\beta - \alpha),$$

and deduce the value of

$$\int_0^\infty \left(\frac{\sin x}{x}\right)^2 dx.$$

Ivan Smith is 200@cam.ac.uk