
Complex Analysis IB – 2012 – Sheet 3

The symbols ℜ(z) and ℑ(z) denote the real respectively imaginary parts of z.

1. Let f be a meromorphic function on C for which |f(z)| → ∞ as |z| → ∞. Show that f cannot
have poles at all integer points.

2. Let g(z) = p(z)/q(z) be a rational function with deg(q) ≥ deg(p) + 2. Show that the sum of
the residues of g over all its singularities is zero.

3. Evaluate the following:

(a)

∫

π

0

dθ

4 + sin2 θ
; (b)

∫ ∞

−∞

sin mx

x(a2 + x2)
dx where a, m ∈ R

+;

(c)

∫ ∞

0

x2 dx

(x2 + 4)2(x2 + 9)
; (d)

2π
∫

0

cos3 3t

1 − 2a cos t + a2
dt where a ∈ (0, 1);

(e)

∫ ∞

0

sinx2 dx; (f)

∫ ∞

−∞

e−ax
2

e−itx dx where a > 0, t ∈ R;

(g)

∫ ∞

0

ln (x2 + 1)

x2 + 1
dx; (h)

∫ ∞

−∞

sin x

x
e−itx dx, where t ∈ R.

4. By integrating z/(a − e−iz) round the rectangle with vertices ±π, ±π + iR, prove that
∫

π

0

x sin x

1 − 2a cosx + a2
dx =

π

a
log(1 + a) for a ∈ (0, 1).

5. Assuming α ≥ 0 and β ≥ 0 prove that
∫ ∞

0

cosαx − cosβx

x2
dx =

π

2
(β − α),

and deduce the value of
∫ ∞

0

(

sin x

x

)2

dx.

6. For −1 < α < 1 and α 6= 0, compute
∫ ∞

0

xα

1 + x + x2
dx.

Letting α → 0, compute
∫ ∞

0

1

1 + x + x2
dx.

7. (i) Use Rouché’s Theorem to give another proof of the Fundamental Theorem of Algebra.

(ii) Establish the following refinement of that Theorem. Let p(z) = zn + an−1z
n−1 + · · ·+ a0

be a polynomial of degree n, and let A = max{|ai|, 0 ≤ i ≤ n − 1}. Then p(z) has n roots
(counted with multiplicity) in the disk {|z| < A + 1}.



8. Let p(z) = z5 + z. Find all z such that |z| = 1 and ℑ p(z) = 0. Calculate ℜ p(z) for such
z. Sketch the curve p ◦ γ, where γ(t) = e2πit, and hence determine the number of z (counted
with multiplicity) such that |z| < 1 and p(z) = x for each x ∈ R.

9. (i) For a positive integer N , let γN be the square contour with vertices (±1 ± i)(N + 1/2).
Show that there exists C > 0 such that for every N , |cotπz| < C on γN .

(ii) By integrating
π cotπz

z2 + 1
around γN , show that

∞
∑

n=0

1

n2 + 1
=

1 + π cothπ

2
.

(iii) Evaluate
∑∞

n=0
(−1)n/(n2 + 1).

10. (i) Show that the Taylor expansion of z/(ez − 1) near the origin has the form

1 −
z

2
+

∞
∑

k=1

(−1)k−1Bn

(2k)!
z2k

where the numbers Bk (the Bernoulli numbers) are rational.

(ii) If k is a positive integer show that

∞
∑

n=1

1

n2k
=

22k−1π2kBk

(2k)!
.

11. (i) Show that z4 + 12z + 1 has exactly three zeroes in the annulus {1 < |z| < 4}.

(ii) Prove that z5 + 2 + ez has exactly three zeros in the half-plane { z
∣

∣ ℜ(z) < 0 }.

(iii) Show that the equation z4 + z + 1 = 0 has one solution in each quadrant. Prove that all
solutions lie inside the circle { z

∣

∣ |z| = 3/2 }.

12. Show that the equation z sin z = 1 has only real solutions.

[Hint: Find the number of real roots in the interval [−(n + 1/2)π, (n + 1/2)π] and compare

with the number of zeroes of z sin z − 1 in {|z| < (n + 1/2)π}.]

13. Let f : U → C be holomorphic and suppose a ∈ U with f ′(a) 6= 0. Show that for r > 0
sufficiently small,

g(w) =
1

2πi

∫

|z−a|=r

zf ′(z)

f(z) − w
dz

defines a holomorphic function g in a neighbourhood of f(a) which is inverse to f .
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