Complex Analysis IB – 2012 – Sheet 1

- 1. Let $T : \mathbb{C} = \mathbb{R}^2 \to \mathbb{R}^2 = \mathbb{C}$ be a real linear map. Show that T can be written $Tz = Az + B\overline{z}$ for unique $A, B \in \mathbb{C}$. Show that T is complex differentiable if and only if B = 0.
- 2. (i) Let f : D → C be a holomorphic function defined on a domain (path-connected open subset) D. Show that f is constant if any of its real part, modulus or argument is constant.
 (ii) Find all holomorphic functions on C of the form f(x + iy) = u(x) + iv(y) where u and v are both real valued.

(iii) Find all holomorphic functions f(z) on \mathbb{C} which have real part $x^3 - 3xy^2$.

3. Define $f : \mathbb{C} \to \mathbb{C}$ by f(0) = 0, and

$$f(z) = \frac{(1+i)x^3 - (1-i)y^3}{x^2 + y^2} \quad \text{for } z = x + iy \neq 0.$$

Show that f satisfies the Cauchy-Riemann equations at 0 but is not differentiable there.

- 4. (i) Verify directly that e^z, cos z and sin z satisfy the Cauchy-Riemann equations everywhere.
 (ii) Find the set of complex numbers z for which |e^z| < 1, the set of those for which |e^{iz}| > 1, and the set of those for which |e^z| ≤ e^{|z|}.
 - (iii) Find the zeros of $1 + e^z$, $\cosh z$ and $\sin z + \cos z$.
- 5. (i) Defining $z^{\alpha} = e^{\alpha \log z}$, for Log the principal branch of the logarithm and $z \notin \mathbb{R}_{\leq 0}$, show that $\frac{d}{dz}z^{\alpha} = \alpha z^{\alpha-1}$. Does $(zw)^{\alpha} = z^{\alpha}w^{\alpha}$ always hold ?

(ii) If $z \in \mathbb{C}$, show that $n \operatorname{Log}(1 + z/n)$ is defined if n is sufficiently large, and that it tends to z as n tends to ∞ . Deduce

$$\lim_{n \to \infty} \left(1 + \frac{z}{n} \right)^n = e^z \qquad \forall z \in \mathbb{C}.$$

(iii) Find the radius of convergence R of the power series $\sum_{n=1}^{\infty} \frac{n!}{n^n} z^n$. Determine whether or not the series converges on the circle |z| = R.

- 6. Find conformal equivalences between the following pairs of domains:
 - (i) the sector $\{z \in \mathbb{C} \mid -\pi/4 < \arg(z) < \pi/4\}$ and the open unit disc D;
 - (ii) the lune $\{z \in \mathbb{C} : |z-1| < \sqrt{2} \text{ and } |z+1| < \sqrt{2}\}$ and the open unit disk D;
 - (iii) the strip $S = \{z \in \mathbb{C} : 0 < \Im z < 1\}$ and the quadrant $Q = \{z \in \mathbb{C} : \Re z > 0, \Im z > 0\}.$

By considering a suitable bounded solution of the Laplace equation $u_{xx} + u_{yy} = 0$ on the strip S, find a non-constant harmonic function on Q which is constant on each of the two boundaries of the quadrant.

7. (i) Find all the Möbius transformations which take the unit disk to itself.

(ii) Find a Möbius transformation taking the region between $\{|z| = 1\}$ and $\{|z-1| = 5/2\}$ to an annulus $\{1 < |z| < R\}$. Is there any choice in the value of R?

(iii) Find a conformal map from an infinite strip onto an annulus. Can such a map be the restriction to the strip of a Möbius map ?

8. (*Hadamard's formula*) Prove that the radius of convergence of the power series $\sum_{n=0}^{\infty} c_n z^n$ is given by

$$R = \frac{1}{\limsup \sqrt[n]{|c_n|}}.$$

[Recall that if $\{x_n\}$ is a sequence of real numbers, and $M_n = \sup_{r \ge n} x_r$, $m_n = \inf_{r \ge n} x_r$ then

 $\limsup\{x_n\} = \lim_{n \to \infty} M_n, \quad \liminf\{x_n\} = \lim_{n \to \infty} m_n, \qquad with \ \pm \infty \ allowed.$

9. Prove that each of the following series converges uniformly on the corresponding subset of \mathbb{C} :

(a)
$$\sum_{n=1}^{\infty} \sqrt{n} e^{-nz}$$
, on $\{z \mid 0 < r \le \Re(z)\};$ (b) $\sum_{n=1}^{\infty} \frac{2^n}{z^n + z^{-n}}$, on $\{z \mid |z| \le r < \frac{1}{2}\}.$

10. Evaluate the integrals

$$\int_{\gamma} |z|^2 \, dz, \qquad \int_{\gamma} z^2 \, dz$$

when $\gamma: [0,1] \to \mathbb{C}$ is given by (a) $\gamma(t) = e^{i\pi t/2}$, and (b) $\gamma(t) = 1 - t + it$.

11. (Integration by parts) Let f and g be holomorphic in a domain D, and let $\gamma: [0,1] \to D$ be a curve with $\gamma(0) = a, \gamma(1) = b$. Show that

$$\int_{\gamma} f(z)g'(z)\,dz = f(b)g(b) - f(a)g(a) - \int_{\gamma} f'(z)g(z)\,dz.$$

- 12. Calculate $\int_{\gamma} z \sin z \, dz$ when γ is the straight line joining 0 to *i*.
- 13. Show that the following functions do not have antiderivatives (i.e. functions of which they are the derivative) on the domains indicated:

(a)
$$\frac{1}{z} - \frac{1}{z-1}$$
 (0 < |z| < 1); (b) $\frac{z}{1+z^2}$ (1 < |z| < ∞).

14. (i) Let $D \subset \mathbb{C}$ be a domain not containing 0, and $\lambda: D \to \mathbb{C}$ a branch of the logarithm. Determine all possible branches of the logarithm on D in terms of λ .

(ii) If $l \in \mathbb{C}^* = \mathbb{C} \setminus \{0\}$ and $w \in \mathbb{C}$ satisfies $e^w = l$, find a continuously differentiable curve $\gamma : [0, 1] \to \mathbb{C}^*$ from 1 to l with the property that $\int_{\gamma} \frac{1}{z} dz = w$. What does this say about the logarithm?

(iii) If $H : \mathbb{C} \to \mathbb{C}^*$ is entire and has no zeroes, show there is an analytic function $h : \mathbb{C} \to \mathbb{C}$ for which $H(z) = e^{h(z)}$ for every z.

Ivan Smith is200@cam.ac.uk