Part IB COMPLEX ANALYSIS (Lent 2009): Example Sheet 1

A.G. Kovalev

Comments and/or corrections are welcome at any time and can be emailed to me at a.g.kovalev@dpmms.cam.ac.uk. This sheet is based on the questions given by Prof. Scholl last year, though I made some modifications.

1. Show that any real linear map $T : \mathbb{C} \simeq \mathbb{R}^2 \to \mathbb{C} \simeq \mathbb{R}^2$ can be written as $T(z) = Az + B\overline{z}$, for two complex numbers A and B. Considering T as a complex-valued function on \mathbb{C} , deduce that T is complex differentiable on \mathbb{C} if and only if B = 0.

2. Show that the function $f(z) = z\overline{z}$ is complex differentiable as z = 0 and nowhere else in \mathbb{C} . Show that |z| is nowhere complex differentiable.

3. (i) Let $f: D(a, r) \to \mathbb{C}$ be a holomorphic function on a disc. Show that f is constant if either its real part, imaginary part, modulus or argument is constant.

(ii) Find all holomorphic functions on \mathbb{C} of the form f(x+iy) = u(x) + iv(y), where u and v are both real valued.

(iii) Find all the functions which are holomorphic on \mathbb{C} and which have the real part $x^3 - 3xy^2$. (The functions that you find should be given in terms of the complex variable z.)

4. Define $f : \mathbb{C} \to \mathbb{C}$ by f(0) = 0 and

$$f(z) = \frac{(1+i)x^3 - (1-i)y^3}{x^2 + y^2} \quad \text{for } z = x + iy \neq 0.$$

Show that f satisfies Cauchy–Riemann equations at 0 but is not differentiable there.

5. Let $f: D(a,r) \to \mathbb{C}$ be a complex differentiable function on a disc about $a \in \mathbb{C}$, with f'(a) = b, and define $\varphi(z) = \overline{f(\overline{z})}$. Show that φ is complex differentiable on $D(\overline{a}, r)$ and that $\varphi'(\overline{a}) = \overline{b}$.

6. Find the radius of convergence R of the series $\sum_{n=1}^{\infty} \frac{n!}{n^n} z^n$. Determine whether or not the series converges on the circle |z| = R.

7. (Hadamard's formula) Prove that the radius of convergence of the power series $\sum_{n=0}^{\infty} c_n z^n$ is given by

$$R = \frac{1}{\limsup \sqrt[n]{|c_n|}}$$

[Recall that is $\{x_n\}$ is a sequence of real numbers, and $M_n = \sup_{r>n} x_r$, $m_n = \inf_{r\geq n} x_r$ then

$$\limsup x_n = \lim_{n \to \infty} M_n, \qquad \liminf x_n = \lim_{n \to \infty} m_n$$

(with $\pm \infty$ allowed throughout).]

8. Let $f(z) = \sum_{n=0}^{\infty} c_n z^n$ be a power series with radius of convergence R > 0. Show (without using any form of Taylor's theorem) that if |w| = R - r < R then f(z) can be represented by a convergent power series $f(z) = \sum_{n=0}^{\infty} d_n (z-w)^n$ on the disc D(w,r). What can you say about its radius of convergence?

9. Verify directly that e^z , $\cos z$ and $\sin z$ satisfy Cauchy–Riemann equations everywhere.

10. (i) Find the set of complex numbers z for which $|e^z| < 1$, the set of those for which $|e^{iz}| > 1$, and the set of those for which $|e^z| \le e^{|z|}$.

(ii) Find the zeros of $1 + e^z$, $\cosh z$, $\sinh z$ and $\sin z + \cos z$.

11. Let $D \subset \mathbb{C}$ be a domain not containing 0, and $\lambda : D \to \mathbb{C}$ a branch of the logarithm. Determine all possible branches of the logarithm on D in terms of λ .

12. Suppose that $f: D(-1,\varepsilon) \to \mathbb{C}$ is holomorphic and satisfies $(f(z))^2 = z$ on $D(-1,\varepsilon)$, for some $\varepsilon > 0$, and f(-1) = -i. Show that f'(-1) = i/2.

13. Prove that each of the following series converges uniformly on the corresponding subset of \mathbb{C} :

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n^2 z^{2n}}$$
, on $\{z : |z| \ge 1\}$; (b) $\sum_{n=1}^{\infty} \sqrt{n} e^{-nz}$, on $\{z : 0 < r \le \text{Re } z\}$
(c) $\sum_{n=1}^{\infty} \frac{2^n}{z^n + z^{-n}}$, on $\{z : |z| \le r < \frac{1}{2}\}$ (d) $\sum_{n=1}^{\infty} 2^{-n} \cos nz$, on $\{z : |\text{Im } z| \le r < \log 2\}$

14. Find the image of a sector $\{z \in \mathbb{C} : \alpha < \arg z < \beta\}$ (where $0 \le \alpha < \beta \le \pi$) under the Möbius transformation

$$z \mapsto \frac{z+i}{z-i}$$

15. Find conformal equivalences between the following pairs of domains:

- (a) the sector $\{z \in \mathbb{C} : -\pi/3 < \arg z < \pi/3\}$ the open unit disc D(0,1);
- (b) the horizontal strip $\{z \in \mathbb{C} : 0 < \text{Im} z < 1\}$ and the quadrant $\{z \in \mathbb{C} : \text{Re} z > 0, \text{Im} z > 0\}$;
- (c) the half-plane $\{z \in \mathbb{C} : \operatorname{Re} z > 0\}$ and the half-disc $\{z \in D(0, 1) : \operatorname{Re} z > 0\}$.

16. (Integration by parts.) Let f and g be holomorphic functions on a domain D and $\gamma : [0, 1] \to D$ a curve with $\gamma(0) = a, \gamma(1) = b$. Show that

$$\int_{\gamma} f(z)g'(z)\,dz = f(b)g(b) - f(a)g(a) - \int_{\gamma} f'(z)g(z)\,dz.$$

Calculate $\int_{\gamma} z \sin z \, dz$ when γ is the straight line joining 0 to i.

17. Show that the following functions do not have antiderivatives on the domains indicated:

(a)
$$\frac{1}{z}$$
 (0 < |z| < ∞); (b) $\frac{z}{1+z^2}$ (1 < |z| < ∞).

18. For each $\ell \in \mathbb{C} \setminus \{0\}$ and $w \in \mathbb{C}$, such that $\exp(w) = \ell$, find a continuously differentiable curve $\gamma : [0,1] \to \mathbb{C} \setminus \{0\}$ joining 1 and ℓ , such that $\int_{\gamma} \frac{1}{z} dz = w$.