1 (i) Show that $f(z) = z\overline{z}$ is complex differentiable at the origin and nowhere else.

(ii) Show that the functions |z|, Arg z, \overline{z} are nowhere holomorphic.

- 2 Find all holomorphic functions on \mathbb{C} of the form f(x + iy) = u(x) + iv(y) where u and v are both real valued.
- 3 Let $f: D \to \mathbb{C}$ be an holomorphic function defined on a domain D. Show that f is constant if either its real part, imaginary part, modulus or argument is constant.
- 4 Define $f : \mathbb{C} \to \mathbb{C}$ by f(0) = 0, and

$$f(z) = \frac{(1+i)x^3 - (1-i)y^3}{x^2 + y^2} \quad \text{for } z = x + iy \neq 0.$$

Show that f satisfies the Cauchy-Riemann equations at 0 but is not differentiable there.

5 Consider the function $f : \mathbb{C} \to \mathbb{C}$ defined by

$$f(z) = \begin{cases} \frac{x^3 y(y - ix)}{x^6 + y^2} & \text{when } z = x + iy \neq 0; \\ 0 & \text{when } z = 0. \end{cases}$$

Prove that (f(z) - f(0))/z tends to 0 as $z \to 0$ along any straight line through the origin, but that f is not differentiable at the origin.

- 6 Find the radius of convergence R of the power series $\sum_{n=1}^{\infty} \frac{n!}{n^n} z^n$. Determine whether or not the series converges on the circle |z| = R.
- 7 (Hadamard's formula) Prove that the radius of convergence of the power series $\sum_{n=0}^{\infty} c_n z^n$ is given by

$$R = \frac{1}{\limsup \sqrt[n]{|a_n|}}.$$

[Recall that if $\{x_n\}$ be a sequence of real numbers, and $M_n = \sup_{r \ge n} x_r$, $m_n = \inf_{r \ge n} x_r$ then

$$\limsup\{x_n\} = \lim_{n \to \infty} M_n, \quad \liminf\{x_n\} = \lim_{n \to \infty} m_n.$$

(with $\pm \infty$ allowed throughout).]

- 8 Let $f(z) = \sum_{n=0}^{\infty} c_n z^n$ be a power series with radius of convergence R > 0. Show (without using any form of Taylor's theorem) that if |w| = R r < R then f(z) can be represented by a convergent power series $f(z) = \sum_{n=0}^{\infty} d_n (z w)^n$ on the disc D(w, r). What can you say about its radius of convergence?
- 9 Verify directly that e^z , $\cos z$ and $\sin z$ satisfy the Cauchy-Riemann equations everywhere.
- 10 (i) Find the set of complex numbers z for which $|e^z| < 1$, the set of those for which $|e^{iz}| > 1$, and the set of those for which $|e^z| \le e^{|z|}$.

(ii) Find the zeros of $1 + e^z$, $\cosh z$, $\sinh z$ and $\sin z + \cos z$.

11 Denote by Log the principal branch of the logarithm. If $z \in \mathbb{C}$, show that $n \operatorname{Log}(1 + z/n)$ is defined if n is sufficiently large, and that it tends to z as n tends to ∞ . Deduce that for any $z \in \mathbb{C}$,

$$\lim_{n \to \infty} \left(1 + \frac{z}{n} \right)^n = e^z$$

12 Let $D \subset \mathbb{C}$ be a domain not containing 0, and $\lambda: D \to \mathbb{C}$ a branch of the logarithm. Determine all possible branches of the logarithm on D in terms of λ .

$$\sum_{k=1}^{\infty} \frac{z^k}{1+z^{2k}} \tag{1}$$

converges uniformly in each of the sets $D_r = \{z \in \mathbb{C} \mid |z| \le r\}$ and $E_R = \{z \in \mathbb{C} \mid |z| \ge R\}$. (ii) Show that the series (1) does *not* converge uniformly in either of the sets $D = \{z \in \mathbb{C} \mid |z| < 1\}$ or $E = \{z \in \mathbb{C} \mid |z| > 1\}$.

(iii) Show that on each of D and E the series (1) converges to a holomorphic function.

14 Prove that each of the following series converges uniformly on the corresponding subset of \mathbb{C} :

$$\begin{aligned} (a) \ \sum_{n=1}^{\infty} \frac{1}{n^2 z^{2n}}, & \text{on} \ \{ \ z \ \big| \ |z| \ge 1 \ \}; \\ (b) \ \sum_{n=1}^{\infty} \sqrt{n} e^{-nz}, & \text{on} \ \{ \ z \ \big| \ 0 < r \le \operatorname{Re}(z) \ \}; \\ (c) \ \sum_{n=1}^{\infty} \frac{2^n}{z^n + z^{-n}}, & \text{on} \ \{ \ z \ \big| \ |z| \le r < \frac{1}{2} \ \}; \\ (d) \ \sum_{n=1}^{\infty} 2^{-n} \cos nz, & \text{on} \ \{ \ z \ \big| \ |\operatorname{Im}(z)| \le r < \log 2 \ \}. \end{aligned}$$

15 (i) Find a conformal equivalences between the sector $\{z \in \mathbb{C} \mid -\pi/4 < \arg(z) < \pi/4\}$ and the open unit disc D(0, 1).

(ii) Find the image of the sector $\{z \in \mathbb{C} \mid \alpha < \arg(z) < \beta\}$ (where $0 \le \alpha < \beta \le \pi$) under the Möbius transformation

$$z \mapsto \frac{z+i}{z-i}$$
.

16 Evaluate the integrals

$$\int_{\gamma} |z|^2 \, dz, \qquad \int_{\gamma} z^2 \, dz$$

when $\gamma: [0,1] \to \mathbb{C}$ is given by (a) $\gamma(t) = e^{i\pi t/2}$, and (b) $\gamma(t) = 1 - t + it$.

17 Show that if $\gamma: [\alpha, \beta] \to \mathbb{C}$ is a continuously differentiable curve and $(-\gamma)$ is the opposite curve, then

$$\int_{(-\gamma)} f(z) \, dz = -\int_{\gamma} f(z) \, dz$$

18 (Integration by parts) Let f and g are holomorphic in a domain D, and let $\gamma: [0,1] \to D$ be a curve with $\gamma(0) = a, \gamma(1) = b$. Show that

$$\int_{\gamma} f(z)g'(z)\,dz = f(b)g(b) - f(a)g(a) - \int_{\gamma} f'(z)g(z)\,dz.$$

- 19 Calculate $\int_{\gamma} z \sin z \, dz$ when γ is the straight line joining 0 to *i*.
- 20 Show that the following functions do not have antiderivatives on the domains indicated:

(a)
$$\frac{1}{z}$$
 (0 < |z| < \infty);
(b) $\frac{1}{z} - \frac{1}{z-1}$ (0 < |z| < 1);
(c) $\frac{z}{1+z^2}$ (1 < |z| < \infty);
(d) $\frac{1}{z(1-z^2)}$ (0 < |z| < 1);

Comments and corrections to a.j.scholl@dpmms.cam.ac.uk