1 (i) Use the Cauchy integral formula to compute

$$\int_{|z|=1} \frac{e^{\alpha z}}{2z^2 - 5z + 2} \, dz$$

where $\alpha \in \mathbb{C}$ and 0 < r < 1.

(ii) By considering the real part of a suitable complex integral, show that for all $r \in (0,1)$,

$$\int_0^{\pi} \frac{\cos n\theta}{1 - 2r\cos\theta + r^2} d\theta = \frac{\pi r^n}{1 - r^2}$$

- 2 Strengthen Liouville's theorem by showing that f is an entire function such that $f(z)/z \to 0$ as $|z| \to \infty$, then f is constant.
- 3 Let f be an entire function which, for some $a \in \mathbb{C}$ and $\epsilon > 0$, never takes values in $D(a, \epsilon)$. Prove that f is constant.
- 4 Let f be analytic on D(w, R). Show that for every r < R,

$$f^{(n)}(w) \le \frac{n!}{r^n} \sup_{|z-w|=r} |f(z)|.$$

- 5 Let f be an entire function such that for every positive integer n one has f(1/n) = 1/n. Show that f(z) = z.
- 6 Show that there is no holomorphic function $f: D(0,1) \to \mathbb{C}$ such that $f(z)^2 = z$.
- 7 Find the Laurent expansion (in powers of z) of $1/(z^2 3z + 2)$ in each of the regions:

$$\{z \mid |z| < 1\}; \quad \{z \mid 1 < |z| < 2\}; \quad \{z \mid |z| > 2\}.$$

Also find its Laurent expansion (in powers of z - 1) in the region $\{z \mid 0 < |z - 1| < 1\}$.

8 Classify the singularities of each of the following functions:

$$\frac{z}{\sin z}, \qquad \sin \frac{\pi}{z^2}, \qquad \frac{1}{z^2} + \frac{1}{z^2 + 1}, \qquad \frac{1}{z^2} \cos \left(\frac{\pi z}{z + 1}\right).$$

- 9 Let f have an isolated singularity at z = a which is not an essential singularity. Show that there exists r > 0 such that $f(z) \neq 0$ whenever 0 < |z a| < r.
- 10 (Cassorati-Weierstrass theorem) Let f be holomorphic on $D(a,R)\setminus\{a\}$ with an essential singularity at z=a. Show that for any $b\in\mathbb{C}$, there exists a sequence of points $z_n\in D(a,R)$ with $z_n\neq a$ such that $z_n\to a$ and $f(z_n)\to b$ as $n\to\infty$.

Find such a sequence when $f(z) = e^{1/z}$, a = 0 and b = 2.

[A much harder theorem of Picard says that in any neighbourhood of an essential singularity, an analytic function takes *every* complex value except possibly one.]

- 11 (i) Let f be an entire function. Show that f is a polynomial, of degree $\leq k$, if and only if there is a constant M for which $|f(z)| < M(1+|z|)^k$ for all z.
 - (i) Show that an entire function f is a polynomial if and only if $|f(z)| \to \infty$ as $|z| \to \infty$.
- 12 Let f be a function which is analytic on \mathbb{C} apart from a finite number of poles. Show that if there exist s k such that $|f(z)| \leq |z|^k$ for all z with |z| sufficeeintly large, then f is a rational function (i.e. a quotient of two polynomials).

- 13 Let $D \subset \mathbb{C}$ be a simply-connected domain which does not contain 0. Show that there exists a branch of the logarithm on D.
- 14 Let $f: \mathbb{C} \to \mathbb{C}$ be holomorphic. If $f(n) = n^2$ for every $n \in \mathbb{Z}$, does it follow that $f(z) = z^2$?
- 15 (i) Let $w \in \mathbb{C}$, and let γ , $\delta \colon [0,1] \to \mathbb{C}$ be closed curves such that for all $t \in [0,1]$, $|\gamma(t) \delta(t)| < |\gamma(t) w|$. By computing the winding number of the closed curve $\sigma(t) = \frac{\delta(t) w}{\gamma(t) w}$ about the origin, show that $I(\gamma; w) = I(\delta; w)$.
 - (ii) If $w \in \mathbb{C}$, r > 0, and γ is a closed curve which does not meet D(w, r), show that $I(\gamma; w) = I(\gamma; z)$ for every $z \in D(w, r)$.
 - (iii) Deduce that if γ is a closed curve in \mathbb{C} and U is the complement of (the image of) γ , then the function $w \mapsto I(\gamma; w)$ is a locally constant function on U.
- 16 Let f be a meromorphic function on \mathbb{C} such that f(1/z) is also meromorphic. Show that f is a rational function.
- 17 (Schwarz's Lemma) Let f be analytic on D(0,1), satisfying $|f(z)| \le 1$ and f(0) = 0. By applying the maximum principle to f(z)/z, show that $|f(z)| \le |z|$. Show also that if |f(w)| = |w| for some $w \ne 0$ then f(z) = cz for some constant c.
- 18 Use Schwarz's Lemma to prove that any conformal equivalence from D(0,1) to itself is given by a Möbius transformation.
- 19 Let $f: D(a,R) \setminus \{a\} \to \mathbb{C}$ be holomorphic. Show that if f has a non-removable singularity at z=a, then the function $\exp f(z)$ has an essential singularity at z=a. Deduce that if there exists M such that $\operatorname{Re} f(z) < M$ for $z \in D(a,R)$, then f has a removable singularity at z=a.
- 20 Show that the power series $\sum_{n=1}^{\infty} z^{n!}$ defines an analytic function f on D(0,1). Show that f cannot be analytically continued to any domain which properly contains D(0,1). [Hint: any such domain must contain a point $e^{2\pi i p/q}$ with $p/q \in \mathbb{Q}$.]

Comments and corrections to a.j.scholl@dpmms.cam.ac.uk