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1. Let A ⊂ C be an open set, F : A × [0, 1] −→ C such that F is continuous (on

A× [0, 1]) and z 7→ F (z, s) is holomorphic for every s ∈ [0, 1]. Then

f : z 7→
∫ 1

0
F (z, s)ds

is holomorphic on A.

2. (a) Calculate explicitly (by parametrization of the circle) the integral

∫

S1

1

z − z0
dz

where z0 is in the disc centered at the origin and radius 1 and S
1 = {z : |z| = 1} is the

boundary circle. Do the same calculation using the keyhole contour.

(b) Calculate
∫

S1

√
zdz where

√
z is the principal branch of the square root (i.e. with

branch cut on the negative real axis) by (i) explicit parametrization, and (ii) use of a

keyhole contour and Cauchy’s theorem to relate it to a real integral from −1 to 0 on the
real axis.

3. Show that if f is an analytic function then its set of zeros {z : f(z) = 0} neces-
sarily consists of isolated points.

Consider a meromorphic function on C with the property that lim
|z|→∞

|f(z)| = +∞.
Show that it cannot have poles at all integer points z = n on the real axis.

4. Suppose f, g are analytic in a region containing {z : |z| ≤ 1} and f has a simple

zero at z = 0 and vanishes nowhere else in {z : |z| ≤ 1}. Let fε(z) = f(z) + εg(z) for

real ε. Show that for sufficiently small ε (i) fε has a unique zero zε in {z : |z| ≤ 1}, and
(ii) zε is a continuous function of ε.

5. Prove that all entire (i.e. analytic on the whole of C) functions that are also injective

take the form f(z) = az + b for some complex numbers a, b. (Hint: apply Casorati-

Weierstrass to g(z) = f(1/z)).

6. State the residue theorem. Evaluate

limR→∞

∫ R

−R

x sinπx

x2 + 2x+ 5
dx.

7. If f is analytic in the punctured disc 0 < |z| < 1 and satisfies |f(z)| ≤ C|z|−1+ε for

some positive number ε then 0 is a removable singularity for f .



8. Let D be a domain in C and γ : [0, 1]→ D an arbitrary continuous path.

(i) Show that there is an r > 0 such that B(γ(t), r) ⊆ D for all t ∈ [0, 1].
(ii) Show that we may construct a piecewise continuously differentiable path δ :

[0, 1] → D such that δ(0) = γ(0), δ(1) = γ(1) and |δ(t) − γ(t)| < r for all t ∈ [0, 1].
[Hint: subdivide [0, 1] into intervals of length 1/n, where 1/n is a Lebesgue number for

the covering {γ−1(B(γ(t), r/2)) | 0 ≤ t ≤ 1}.]
(iii) Show that any two paths δ1, δ2 satisfying the conditions of (ii) are homotopic in

D, by a homotopy which fixes the end-points γ(0) and γ(1). Deduce that
∫

δ1
f(z) dz =

∫

δ2
f(z) dz for any analytic function f : D → C. [This allows us to extend the definition

of
∫

γ f(z) dz to the case when γ is (continuous but) not piecewise continuously differen-

tiable.]

9. Let D be a bounded domain such that C \D is disconnected.

(i) Show that just one component of C \D is unbounded.

(ii) Now assume that C \ D has finitely many components; let C be a bounded

component, and let C ′ = (C \D) \ C. Show that there is a δ > 0 such that |z − w| ≥ δ

for all z ∈ C and w ∈ C ′.

(iii) Now let c ∈ C and cover C by a grid of squares of side δ/2 with c in the centre

of one of the squares. Let K be the union of all the (closed) squares in this grid which

meet C. Show that the boundary ∂K lies entirely in D. Deduce that there is a simple

closed contour γ lying in D with n(γ, c) = 1.

10. (i) Let fn(z) =
∑+n

m=−n(z − m)−2. Show that the sequence (fn(z)) converges

pointwise on C \ Z to a function f(z). Show also that f(z + 1) = f(z) for all z.

(ii) Show that the convergence in (i) is uniform on any set of the form {z | |z| <
R, z 6∈ Z}. Deduce that f(z) is an analytic function on C \ Z.

(iii) Now let g(z) = π2cosec2 πz. Show that the function f(z)− g(z) has only remov-

able singularities in C. Show also that f(x+ iy) and g(x+ iy) both tend to 0 as y → ±∞
[hint: | sin2(x+ iy)| = sin2 x+ sinh2 y], and deduce that f(z) = g(z) for all z ∈ C \ Z.

(iv) By considering the constant terms in the Laurent expansions of f and g about

z = 0, deduce that
∑∞

n=1 1/n
2 = π2/6.

11. (Tripos 1999 IV 13. Hadamard 3 circles theorem.) Let f be analytic in a do-

main containing the annulus {z | r1 ≤ |z| ≤ r2}. By applying the maximum modulus
principle to functions of the form zp(f(z))q for suitable p and q, prove that

M(r)log(r2/r1) ≤M(r1)
log(r2/r) M(r2)

log(r/r1)

for all r ∈ (r1, r2), where M(r) denotes sup{|f(z)| | z ∈ C(0, r)}. Deduce that log M(r)
is a convex function of log r. [Recall that a real function is said to be convex if the chord

joining any two points on its graph lies above, or coincides with, the graph.]


