Complex analysis exercises 4

Sophia Demoulini Lent 05

1. Let $\mathcal{A} \subset \mathbb{C}$ be an open set, $F : \mathcal{A} \times [0,1] \longrightarrow \mathbb{C}$ such that F is continuous (on $\mathcal{A} \times [0,1]$) and $z \mapsto F(z,s)$ is holomorphic for every $s \in [0,1]$. Then

$$f: z \mapsto \int_0^1 F(z, s) ds$$

is holomorphic on \mathcal{A} .

2. (a) Calculate explicitly (by parametrization of the circle) the integral

$$\int_{S^1} \frac{1}{z - z_0} dz$$

where z_0 is in the disc centered at the origin and radius 1 and $S^1 = \{z : |z| = 1\}$ is the boundary circle. Do the same calculation using the keyhole contour.

(b) Calculate $\int_{S^1} \sqrt{z} dz$ where \sqrt{z} is the principal branch of the square root (i.e. with branch cut on the negative real axis) by (i) explicit parametrization, and (ii) use of a keyhole contour and Cauchy's theorem to relate it to a real integral from -1 to 0 on the real axis.

3. Show that if f is an analytic function then its set of zeros $\{z : f(z) = 0\}$ necessarily consists of isolated points.

Consider a meromorphic function on \mathbb{C} with the property that $\lim_{|z|\to\infty} |f(z)| = +\infty$. Show that it cannot have poles at all integer points z = n on the real axis.

4. Suppose f, g are analytic in a region containing $\{z : |z| \leq 1\}$ and f has a simple zero at z = 0 and vanishes nowhere else in $\{z : |z| \leq 1\}$. Let $f_{\epsilon}(z) = f(z) + \epsilon g(z)$ for real ϵ . Show that for sufficiently small ϵ (i) f_{ϵ} has a unique zero z_{ϵ} in $\{z : |z| \leq 1\}$, and (ii) z_{ϵ} is a continuous function of ϵ .

5. Prove that all entire (i.e. analytic on the whole of \mathbb{C}) functions that are also injective take the form f(z) = az + b for some complex numbers a, b. (Hint: apply Casorati-Weierstrass to g(z) = f(1/z)).

6. State the residue theorem. Evaluate

$$\lim_{R \to \infty} \int_{-R}^{R} \frac{x \sin \pi x}{x^2 + 2x + 5} dx.$$

7. If f is analytic in the punctured disc 0 < |z| < 1 and satisfies $|f(z)| \le C|z|^{-1+\epsilon}$ for some positive number ϵ then 0 is a removable singularity for f.

8. Let D be a domain in \mathbb{C} and $\gamma: [0,1] \to D$ an arbitrary continuous path.

(i) Show that there is an r > 0 such that $B(\gamma(t), r) \subseteq D$ for all $t \in [0, 1]$.

(ii) Show that we may construct a piecewise continuously differentiable path δ : [0,1] $\rightarrow D$ such that $\delta(0) = \gamma(0), \ \delta(1) = \gamma(1)$ and $|\delta(t) - \gamma(t)| < r$ for all $t \in [0,1]$. [Hint: subdivide [0,1] into intervals of length 1/n, where 1/n is a Lebesgue number for the covering $\{\gamma^{-1}(B(\gamma(t), r/2)) \mid 0 \le t \le 1\}$.]

(iii) Show that any two paths δ_1, δ_2 satisfying the conditions of (ii) are homotopic in D, by a homotopy which fixes the end-points $\gamma(0)$ and $\gamma(1)$. Deduce that $\int_{\delta_1} f(z) dz = \int_{\delta_2} f(z) dz$ for any analytic function $f: D \to \mathbb{C}$. [This allows us to extend the definition of $\int_{\gamma} f(z) dz$ to the case when γ is (continuous but) not piecewise continuously differentiable.]

9. Let D be a bounded domain such that $\mathbb{C} \setminus D$ is disconnected.

(i) Show that just one component of $\mathbb{C} \setminus D$ is unbounded.

(ii) Now assume that $\mathbb{C} \setminus D$ has finitely many components; let C be a bounded component, and let $C' = (\mathbb{C} \setminus D) \setminus C$. Show that there is a $\delta > 0$ such that $|z - w| \ge \delta$ for all $z \in C$ and $w \in C'$.

(iii) Now let $c \in C$ and cover \mathbb{C} by a grid of squares of side $\delta/2$ with c in the centre of one of the squares. Let K be the union of all the (closed) squares in this grid which meet C. Show that the boundary ∂K lies entirely in D. Deduce that there is a simple closed contour γ lying in D with $n(\gamma, c) = 1$.

10. (i) Let $f_n(z) = \sum_{m=-n}^{+n} (z-m)^{-2}$. Show that the sequence $(f_n(z))$ converges pointwise on $\mathbb{C} \setminus \mathbb{Z}$ to a function f(z). Show also that f(z+1) = f(z) for all z.

(ii) Show that the convergence in (i) is uniform on any set of the form $\{z \mid |z| < R, z \notin \mathbb{Z}\}$. Deduce that f(z) is an analytic function on $\mathbb{C} \setminus \mathbb{Z}$.

(iii) Now let $g(z) = \pi^2 \operatorname{cosec}^2 \pi z$. Show that the function f(z) - g(z) has only removable singularities in \mathbb{C} . Show also that f(x+iy) and g(x+iy) both tend to 0 as $y \to \pm \infty$ [hint: $|\sin^2(x+iy)| = \sin^2 x + \sinh^2 y$], and deduce that f(z) = g(z) for all $z \in \mathbb{C} \setminus \mathbb{Z}$.

(iv) By considering the constant terms in the Laurent expansions of f and g about z = 0, deduce that $\sum_{n=1}^{\infty} 1/n^2 = \pi^2/6$.

11. (Tripos 1999 IV 13. Hadamard 3 circles theorem.) Let f be analytic in a domain containing the annulus $\{z \mid r_1 \leq |z| \leq r_2\}$. By applying the maximum modulus principle to functions of the form $z^p(f(z))^q$ for suitable p and q, prove that

$$M(r)^{\log(r_2/r_1)} \le M(r_1)^{\log(r_2/r)} M(r_2)^{\log(r/r_1)}$$

for all $r \in (r_1, r_2)$, where M(r) denotes $\sup\{|f(z)| \mid z \in C(0, r)\}$. Deduce that $\log M(r)$ is a convex function of $\log r$. [Recall that a real function is said to be *convex* if the chord joining any two points on its graph lies above, or coincides with, the graph.]