ANALYSIS AND TOPOLOGY—EXAMPLES 3

(updated 15 November 2024)

Exercises

- **1.** Recall from lectures that a topological space (X, τ) is said to be Hausdorff if $\forall x, y \in X, x \neq y \implies \exists U, V \subset X \text{ s.t. } x \in U, y \in V, U \cap V = \emptyset$.
 - (a) Show that if X is finite there is only one topology (up to equivalence of topologies) on X which is Hausdorff.
 - (b) Show that if (X, τ) is metrizable then it is Hausdorff.
 - (c) Show that if (X, τ) is Hausdorff and (x_n) is a convergent sequence on X then its limit is unique.
- **2.** Let id: $(X, \tau) \to (X, \rho)$ be the identity function on a set X endowed with possibly different topologies τ and ρ . Is id necessarily continuous?
- 3. Show that the Hausdorff property and second countability are topological invariants.
- 4. Show that the metric topology on \mathbb{R}^n induced by the Euclidean metric is equivalent to the product topology inherited by the Euclidean metric on \mathbb{R} .

Problems

- **5.** Let (X, τ) and (Y, ρ) be topological spaces with (Y, ρ) Hausdorff.
 - (a) Show that $\Delta = \{(y, y) : y \in Y\}$ is a closed subset of $Y \times Y$ with the product topology.
 - (b) Let $f, g: X \to Y$ be continuous. Show that $\{x \in X : f(x) = g(x)\}$ is a closed subset of X.
- 6. (\star) The goal of this problem is to investigate, for a topological space, under what conditions the closure is the same as the sequentially closure of a set.
 - (a) Show that, if X is uncountable and $\tau = \emptyset \cup \{A \subset X : X \setminus A \text{ countable}\}$ is the cocountable topology, some sequentially closed subsets of (X, τ) are not closed.
 - (b) Show that, if (X, τ) is second countable, a subset $A \subset X$ is sequentially closed iff it is closed.
- 7. (*) Let (X, τ) and (Y, ρ) be topological spaces. Recall from lectures that a function $f: X \to Y$ is said to be sequentially continuous if for every convergent sequence (x_n) in X with $x_n \to x$, we have $f(x_n) \to f(x)$. The goal of this question is to investigate the relationship between continuity and sequential continuity.
 - (a) Show that continuous functions $f: X \to Y$ are sequentially continuous.
 - (b) Give an example of (X, τ) and (Y, ρ) and $f: X \to Y$ such that f is sequentially continuous but not continuous.
 - (c) Show that, if (X, τ) is second countable, then sequentially continuous functions $f: X \to Y$ are continuous.
- 8. Let (X, τ) be a topological space, $X = A \cup B$ for $A, B \subset X$. Let (Y, ρ) be another topological space. Take $g: A \to Y$ and $h: B \to Y$ be continuous functions, with respect to the subspace topology, which agree on $A \cap B$. Define a function $f: X \to Y$ by

$$f(x) = \begin{cases} g(x), & x \in A \\ h(x), & x \in B \end{cases},$$

which "glues" together g and h.

(a) Show that, if A and B are both closed in X, then f is continuous.

(b) Is this still true if A is not closed in X?

- **9.** Show that a finite product of metrizable topological spaces is metrizable. *Hint: start by* considering the product of two metric spaces (X, d) and (Y, e), and defining an appropriate metric on $X \times Y$.
- 10. Let $X = [0, 1] \cup [2, 3]$ with the usual topology and define an equivalence relation \sim on X by $x \sim y$ iff x = y or $\{x, y\} = \{1, 2\}$. Show that X/\sim is homeomorphic to [0, 2] with the usual topology.
- **11.** Let X, Y be topological spaces and endow $X \times Y$ with the product topology.
 - (a) Show for each y ∈ Y that X × {y}, as a subspace of X × Y, is homeomorphic to X.
 (b) Define an equivalence relation ~ on X × Y by (x, y) ~ (x', y') iff x = x'. Assuming Y is non-empty, show that X × Y/~ is homeomorphic to X.
- 12. Let ~ be the equivalence relation on \mathbb{R}^2 defined by $(x, y) \sim (z, w)$ iff $x z \in \mathbb{Z}$ and $y w \in \mathbb{Z}$. Show that \mathbb{R}^2/\sim is homeomorphic to the torus.

$$T = \left\{ \left((2 + \cos \theta) \cos \phi, (2 + \cos \theta) \sin \phi, \sin \theta) \middle| \theta, \phi \in [0, 2\pi] \right\}.$$

- **13.** Let $X = \{(x, y) \in \mathbb{R}^2 : y = \pm 1\}$ and \sim be the equivalence relation on X defined by $(x, y) \sim (x', y') \Leftrightarrow x' = x \neq 0, y' = -y$. Define $Q = X/\sim$.
 - (a) Show that every point in Q has a neighborhood homeomorphic to \mathbb{R} . *Hint: it helps to sketch* Q.
 - (b) Show that Q is, however, not Hausdorff.
- 14. Recall that, on a set X, we say that $\tau = \emptyset \cup \{A \subset X : X \setminus A \text{ countable}\}\$ is the cocountable topology and $\rho = \emptyset \cup \{A \subset X : X \setminus A \text{ finite}\}\$ is the cofinite topology. Can (X, τ) be compact? What about (X, ρ) ?
- 15. (*) Let X be a compact Hausdorff space. Show that disjoint closed subsets of X can be separated: if $F_1, F_2 \subset X$ are closed and disjoint, then there are disjoint open subsets G_1 , $G_2 \subset X$ with $F_1 \subset G_1$ and $F_2 \subset G_2$. Thus, we say that a compact Hausdorff topology not only separates points, but also separates sets.