
ANALYSIS AND TOPOLOGY—EXAMPLES 2
(updated 27 September 2024)

Exercises

1. Let (X, d) and (Y, d′) be metric spaces, and f : X → Y be a map. Recall from lectures
the following definition of continuity: we say f is continuous at x ∈ X if

∀ε > 0, ∃δ = δ(x, ε) > 0 such that d(x, y) < δ =⇒ d′(f(x), f(y) < ε.

(a) Show that the following is an equivalent definition: f is continuous at x if ∀V ⊂ Y
which is a neighborhood of f(x), U = f−1(V ) is a neighborhood of x. This second,
more abstract, definition will come in handy soon!

(b) Deduce that f is continuous in X if and only if ∀V ⊂ Y open in Y , f−1(V ) is open
in X.

(c) Show that f is continuous in X if and only if ∀V ⊂ Y closed in Y , f−1(V ) is closed
in X.

2. Consider a sequence (fn) is a sequence of uniformly continuous, real-valued functions on
R, such that fn ⇒ f uniformly.
(a) Show that f must be uniformly continuous. Thus, uniform limits preserve uniform

continuity.
(b) Is the conclusion still true if we only assume fn → f pointwise? Give a proof or

counterexample.
3. Consider Q∩[0, 1] with the usual Euclidean metric. Show that it is totally bounded. Show,

using the definition of compactness, that it is also not compact. Is this in contradiction
with the Heine–Borel theorem from lectures?

4. The goal of this question is to reprove Heine–Borel and Heine–Cantor theorems in the
easier Euclidean setting.
(a) Show, without appealing to the Heine–Borel theorem for general metric spaces from

lectures, that K ⊂ Rn is compact iff it is closed and bounded. You may use the
fact that, for a metric space, closure/compactness is the same as sequential clo-
sure/compactness, respectively.

(b) Show, without appealing to the Heine–Cantor theorem for general metric spaces
from lectures, that if f : [a, b] → R is continuous it is also uniformly continuous.
You may use the fact that, for a metric space, continuity is the same as sequential
continuity.

Problems

5. For each k ∈ N0, define the metric space Ck([a, b]) as the space of k times continuously
differentiable real-valued functions on [a, b] endowed with the metric

dCk(f, g) =
k∑
j=0

sup
x∈[a,b]

∣∣∣∣∣djfdxj (x)− djg

dxj
(x)
∣∣∣∣∣ .

(a) Show that Ck([a, b]) is a complete metric space.
(b) Show that the map f 7→

∫ x
a f(y)dy is a continuous map from Ck([a, b]) to Ck+1([a, b]).

(c) Show that the map f 7→ f ′ is a continuous map from Ck+1([a, b]) to Ck([a, b]).
6. Which of the following functions f : [0,∞)→ R are uniformly continuous?
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(a) f(x) = inf{|x− n2| : n ∈ N};
(b) f(x) = sin x2;
(c) f(x) = (sin x3)/(x2 + 1).

7. Let f : [0,∞) → [0,∞) be uniformly continuous and such that
∫∞

0 f(x)dx exists and is
finite.
(a) Show that limx→∞ f(x) = 0.
(b) Is this still true if f is only continuous? Give a proof or counterexample.

8. In this question we consider spaces of real sequences.
(a) Justify that the metric space `∞, of bounded real sequences and equipped with

metric d((xn), (yn)) = supn∈N |xn − yn|, is complete.
(b) Consider the space `2 = {(xn) ∈ RN|

∑
x2
n converges} with

d((xn), (yn)) =

√√√√ ∞∑
n=1

(xn − yn)2.

Show that d is a well-defined metric on `2 and that (`2, d) is complete.
9. On a non-empty complete metric space (X, d), consider a continuous map f : X → X

with the property that for each pair x, y ∈ X with x 6= y, there is a number L ∈ (0, 1)
(which depends on the pair x, y) such that d(f(x), f(y)) ≤ Ld(x, y).
(a) Show that, if f has a fixed point, then it is unique.
(b) Must f be a contraction? Must f have a fixed point? Give a proof or counterexam-

ple.
(c) Show that, if (X, d) is assumed to be compact, then f necessarily has a unique fixed

point.
10. Take 0 < a, b < ∞. Let f : [−a, a] × [−b, b] → R be a continuous function. Consider the

initial value problem {
y′(x) = f(x, y(x)),
y(0) = y0

.

(a) Is the solution necessarily unique? Give a proof or counterexample.
(b) Show that for every k ∈ N, there is sequence of intervals Ik, which are neighborhood

of zero, and functions yk ∈ C(Ik) solving the initial value problem{
y′k(x) = fk(x, yk(x)),
yk(0) = y0

.

where (fk) are Lipschitz functions satisfying fk ⇒ f on [−a, a] × [b, b]. Hint: you
may assume, without proof, the statement of problem 12 below. What happens as
k →∞?

(c) (?) Show that there is a solution y(x) for x ∈ (−ε, ε), where 0 < ε ≤ a. Hint:
you may assume, without proof, the statements in problems 12 and 13(d) below.
Compare with your answer in part (b).

11. On a normed vector space there is a canonical choice of metric which makes it a metric
space: d(x, y) = ‖x−y‖. Show that on a finite-dimensional real vector space, every choice
of norm (and thus canonical metric) is equivalent. Is this still true for infinite-dimensional
vector spaces?

OPTIONAL extra problems (not for marking)

12. The goal of this question is to guide you through the proof of the Stone–Weierstrass
theorem, which asserts that a continuous function f : K → R, where K = [a1, b1]× · · · ×
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[an, bn] ⊂ Rn, can be approximated uniformly by a sequence of polynomials. (Compare
with Taylor series: we don’t require analyticity here for the convergence to occur.) We
take n = 1 in what follows.
(a) Argue that, without loss of generality, it is enough to show the statement with

[a1, b1] = [0, 1].
(b) Letting pn,k(x) =

(n
k

)
xk(1− x)n−k, show that one has

n∑
k=0

pn,k(x) = 1,
n∑
k=0

(
x− k

n

)2
pn,k(x) = 1

n
x(1− x).

(c) Now let pn(x) =
∑n
k=0 f

(
k
n

)
pn,k(x). Use the first identity to show

|pn(x)− f(x)| ≤
∑

|x− k
n
|<δ

|f(k/n)− f(x)| pk,n(x) +
∑

|x− k
n
|≥δ

|f(k/n)− f(x)| pk,n(x),

for any δ > 0.
(d) Choose an appropriate δ, and use the second identity for pn,k, to conclude that

pn ⇒ f in [0, 1].
13. Let (X, d) be compact metric space, and let C(X) denote the space of all real-valued

continuous functions on X. We say that F ⊂ C(X) is equicontinuous if every x ∈ X and
every ε > 0, x has a neighborhood Ux such that |f(x) − f(y)| < ε for all y ∈ Ux and all
f ∈ F . (Note: the neighborhood Ux is the same for the entire family of functions F .)
The goal of this question is to show that F ⊂ C(X) is compact if and only if it is closed,
bounded, and equicontinuous.
(a) Using results from the lectures, justify that it is enough to show F ⊂ C(X) is totally

bounded if and only if it is bounded and equicontinuous.
(b) Show the (⇒) direction: if F ⊂ C(X) is totally bounded, then it is bounded and

equicontinuous.
(c) (?) Show the (⇐) direction. Hint: use the compactness of X to construct a finite

subfamily of F that is a candidate ε-net for F .
(d) Deduce that if (fn) is a family of real-valued continuous functions on a closed and

bounded interval [a, b] of the real line, which is bounded and equicontinuous relative
to the uniform metric (equivalently, bounded and equicontinuous uniformly in n),
then there is a subsequence (fnk

) that converges uniformly. Compare with question
13 from sheet 1.

Email comments and suggestions to rbdt2@cam.ac.uk
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