ANALYSIS AND TOPOLOGY—EXAMPLES 1

(updated 26 September 2024)

Exercises

- **1.** Let (X, d) be a metric space.
 - (a) Show that $U \subset X$ is open in X if and only if U is a neighborhood for all of its points.
 - (b) Show that $A \subset X$ is closed in X if and only if $A = \{x \in X : \inf_{y \in A} d(x, y) = 0\}$.
- **2.** Let (X, d) be a metric space. In the definition of the topology of (X, d), why don't we consider infinite intersections of open sets to be open? *Hint: give a counterexample with* $X = \mathbb{R}$.
- **3.** Let (X, d) be a metric space, $\{x_n\}_{n=1}^{\infty}$ be a sequence in X. In lectures, we said that x_n converges to $x \in X$ if

$$\forall \epsilon > 0 \exists N = N(\epsilon) > 0 \text{ s.t. } d(x_n, x) < \epsilon \text{ for all } n \ge N.$$
 (*)

(a) Show that $x_n \to x$ equivalent to the following statement:

$$\forall V \subset X \text{ nhood of } x \exists N = N(V) > 0 \text{ s.t. } x_n \in V \text{ for all } n \geq N.$$
 (**)

- (b) In lectures, we used (**) to show that if $\{x_n\}_{n=1}^{\infty}$ converges in X, then its limit is unique. Repeat the proof with definition (*).
- **4.** Let (f_n) and (g_n) be sequences of real-valued functions on a set X converging uniformly: $f_n \rightrightarrows f$ and $g_n \rightrightarrows g$.
 - (a) Show that $f_n + g_n \rightrightarrows f + g$.
 - (b) Show that $f_n g_n \to fg$ pointwise, but that $f_n g_n$ does not converge uniformly to fg in general. If f and g are bounded, does the latter conclusion change? What if f is bounded but g is not?
- 5. Let (f_n) be a sequence of continuous functions on $[0,1]^k \subset \mathbb{R}^k$, and suppose that $f_n \rightrightarrows f$ uniformly. Let (x_m) be a convergent sequence of points in $[0,1]^k$, and suppose that $x_m \to x$.
 - (a) Show that if $f_n \rightrightarrows f$ uniformly, then $f_n(x_n) \to f(x)$. Thus, we say uniform convergence preserves sequential continuity.
 - (b) Is (a) still true if f_n converges pointwise, but not necessarily uniformly, to f?

Problems

- 6. For each of the following sets X, determine whether or not the given function d defines a metric on X.
 - (a) $X = \mathbb{R}^n$; $d(x, y) = \min\{|x_1 y_1|, |x_2 y_2|, \dots, |x_n y_n|\}.$
 - (b) $X = \mathbb{C};$

 $d(z,w) = \begin{cases} |z-w|, & \text{if } z \text{ and } w \text{ lie on the same line through the origin,} \\ |z|+|w|, & \text{otherwise.} \end{cases}$

(c) X is the set of functions from \mathbb{N} to \mathbb{N} , i.e. sequences with values in \mathbb{N} ; for N the smallest natural number such that $x_n \neq y_n$,

$$d(x_n, y_n) = \begin{cases} 0, & \text{if } x_n = y_n \ \forall n \in \mathbb{N} \\ 2^{-N}, & \text{otherwise.} \end{cases}$$

(d) X is the set of closed, non-empty, bounded subsets of a metric space (M, d');

$$d(A,B) = \max\{\sup_{a \in A} \inf_{b \in B} d'(a,b), \sup_{b \in B} \inf_{a \in A} d'(a,b)\}, \qquad A, B \in X.$$

Note: we say a subset U of a metric space (M, d') is bounded if there exists r > 0such that d'(x, y) < r for all $x, y \in U$.

- 7. For an alphabetic string s of length $L \in \mathbb{N}$, let s[i] be the character at position i, for $i = 1, \ldots, L$. Let X_L be the set of strings of length L. In computer science, one sometimes considers the functions on X_L given by
 - (a) $d_1(s,s') = \#\{i: s[i] \neq s'[i]\};$
 - (b) $d_2(s, s')$ is the minimum number of single-character insertions, deletions or substitutions required to change s into s'.

Show that both are metrics on X_L . For which $L \in \mathbb{N}$ are they equivalent metrics?

- 8. Consider the following subsets of \mathbb{R} with the Euclidean metric. Determine if they are open or closed.
 - (a) $U = (0, 1) \cup (2, 3)$.
 - (b) U = [0, 1). What if we replace the metric space \mathbb{R} by the metric space [-1, 1], the metric space [0,1) or the metric space [0,2], in each case with the subspace metric inherited from the Euclidean metric?
 - (c) $U = \bigcup_{n=1}^{\infty} (-n, \sin(n)).$
- **9.** Consider the following subsets of \mathbb{R}^2 with the Euclidean metric. Determine if they are open or closed.
 - (a) $\{(x, y) : y > 0\};$
 - (b) $\{(x,y): y \neq 0\};$
 - (c) $\{(x,0): 0 \le x \le 1\};$
 - (d) $\{(x, 0) : 0 < x < 1\};$
 - (e) $\{(x,y): y/x \in \mathbb{N}\} \cup \{(x,y): x=0\};$
 - (f) $\{(x,y): y/x \in \mathbb{Q}\} \cup \{(x,y): x=0\};$
- **10.** Consider the following subsets of C([0,1]) with the uniform metric $d(f,g) = \sup_{[0,1]} |f-g|$. Determine if they are open or closed.
 - (a) $\{f \in C([0,1]) | f(1/2) = 0\};$
 - (b) $\{f \in C([0,1]) \mid \int_0^1 f = 0\}.$

Does the answer change if we replace the uniform metric with the L^1 metric d(f,g) = $\int_{0}^{1} |f - g|?$

- 11. (\star) Show that the function $1_{\mathbb{Q}}$ is not the pointwise limit of any sequence of continuous functions.
- 12. Which of the following sequences (f_n) of functions converge uniformly on the set X? If it exists, what is their uniform limit?
 - (a) $f_n(x) = x^{2n}$ on X = (0, 1);

 - (b) $f_n(x) = xe^{-nx}$ on $X = [0, \infty);$ (c) $f_n(x) = e^{-x^2} \sin(x/n)$ on $X = \mathbb{R}.$
- 13. (\star) Let (f_n) be a sequence of real-valued functions on a set X, which are pointwise bounded: $\sup_{n \in \mathbb{N}} |f_n(x)| \le g(x) < \infty$ for a function g on X.
 - (a) Let $X = \mathbb{N}$, show that (f_n) has a convergent subsequence.
 - (b) If $X = \mathbb{R}$, does (f_n) still have a convergent subsequence?
- 14. Prove that a bounded sequence in \mathbb{R}^n must have a convergent subsequence. *Hint: in* Analysis I you saw this is true for n = 1; try a proof by induction on n.

Email comments and suggestions to rbdt2@cam.ac.uk