1. Let $X=[0,1] \cup[2,3]$ with the usual topology and define an equivalence relation \sim on X by $x \sim y$ iff $x=y$ or $\{x, y\}=\{1,2\}$. Show that X / \sim is homeomorphic to $[0,1]$ with the usual topology.
2. Let X, Y be topological spaces and endow $X \times Y$ with the product topology.
(a) Show for each $y \in Y$ that $X \times\{y\}$, as a subspace of $X \times Y$, is homeomorphic to X.
(b) Define an equivalence relation \sim on $X \times Y$ by $(x, y) \sim\left(x^{\prime}, y^{\prime}\right)$ iff $x=x^{\prime}$. Assuming $Y \neq \emptyset$, show that $X \times Y / \sim$ is homeomorphic to X.
3. Let (X, d) and (Y, e) be metric spaces. Let τ, σ be the topologies induced by d, e respectively. Define $f:(X \times Y)^{2} \rightarrow \mathbb{R}$ by $f((x, y),(z, w))=\max \{d(x, z), e(y, w)\}$. Show that f is a metric on $X \times Y$ and that the topology it induces is the product topology induced by the topologies τ on X and σ on Y. Deduce that if \mathbb{R} has the usual topology then the product topology on $\mathbb{R} \times \mathbb{R}$ is exactly the Euclidean topology.
4. Let \sim be the equivalence relation on \mathbb{R}^{2} defined by $(x, y) \sim(z, w)$ iff $x-z \in \mathbb{Z}$ and $y-w \in \mathbb{Z}$. Show that \mathbb{R}^{2} / \sim is homeomorphic to the torus

$$
T=\{((2+\cos \theta) \cos \phi,(2+\cos \theta) \sin \phi, \sin \theta) \mid \theta, \phi \in[0,2 \pi]\}
$$

5. Define $f: \mathcal{M}_{n} \rightarrow \mathcal{M}_{n}$ by $f(A)=A^{4}$. Show that f is differentiable at every $A \in \mathcal{M}_{n}$, and find $\left.D f\right|_{A}$ as a linear map. Show further that f is twice-differentiable at every $A \in \mathcal{M}_{n}$ and find $\left.D^{2} f\right|_{A}$ as a bilinear map from $\mathcal{M}_{n} \times \mathcal{M}_{n}$ to \mathcal{M}_{n}.
6. Consider the map $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by $f(x)=x /\|x\|$ for $x \neq 0$, and $f(0)=0$. Show that f is differentiable except at 0 , and that

$$
\left.D f\right|_{x}(h)=\frac{h}{\|x\|}-\frac{x(x \cdot h)}{\|x\|^{3}} .
$$

Verify that $\left.D f\right|_{x}(h)$ is orthogonal to x and explain geometrically why this is the case.
7. At which points is the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by $f(x, y)=|x||y|$ differentiable? What about the function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
g(x, y)=\left\{\begin{array}{cc}
x y / \sqrt{x^{2}+y^{2}} & (x, y) \neq(0,0) \\
0 & (x, y)=(0,0)
\end{array} ?\right.
$$

8. Let $\mathcal{N}_{n} \subset \mathcal{M}_{n}$ be the set of invertible $n \times n$ matrices. Show that \mathcal{N}_{n} is an open subset of \mathcal{M}_{n}.
Define $f: \mathcal{N}_{n} \rightarrow \mathcal{N}_{n}$ by $f(A)=A^{-1}$. Show that f is differentiable at the identity matrix I, and that $\left.D f\right|_{I}(H)=-H$.
Let $A \in \mathcal{N}_{n}$. By writing $(A+H)^{-1}=A^{-1}\left(I+H A^{-1}\right)^{-1}$, or otherwise, show that f is differentiable at A. What is $\left.D f\right|_{A}$?
Show further that f is twice-differentiable at I, and find $\left.D^{2} f\right|_{I}$ as a bilinear map.
9. Recall that the function $\operatorname{det}: \mathcal{M}_{n} \rightarrow \mathbb{R}$ is differentiable at every invertible matrix A with $\left.D \operatorname{det}\right|_{A}(H)=\operatorname{det} A \operatorname{tr}\left(A^{-1} H\right)$. Show that det is twice differentiable at I and find $\left.D^{2} \operatorname{det}\right|_{I}$ as a bilinear map.
10. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $(a, b) \in \mathbb{R}^{2}$.
(a) Suppose that $D_{1} f$ exists and is continuous in some open ball around (a, b), and that $D_{2} f$ exists at (a, b). Show that f is differentiable at (a, b).
(b) Suppose instead that $D_{1} f$ exists and is bounded on some open ball around (a, b), and that for fixed x the function $y \mapsto f(x, y)$ is continuous. Show that f is continuous at (a, b).
11. Define $f: \mathcal{M}_{n} \rightarrow \mathcal{M}_{n}$ by $f(A)=A^{2}$. Show that f is continuously differentiable on the whole of \mathcal{M}_{n}. Deduce that there is a continuous square-root function on some neighbourhood of I; that is, show that there is an open ball $B_{\varepsilon}(I)$ for some $\varepsilon>0$ and a continuous function $g: B_{\varepsilon}(I) \rightarrow \mathcal{M}_{n}$ such that $g(A)^{2}=A$ for all $A \in B_{\varepsilon}(I)$. Is it possible to define a continuous square-root function on the whole of \mathcal{M}_{n} ?
12. Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $f(x, y)=\left(x, x^{3}+y^{3}-3 x y\right)$ and the set $C=\left\{(x, y) \in \mathbb{R}^{2}: x^{3}+y^{3}-3 x y=0\right\}$. Show that f is locally invertible around each point of C except $(0,0)$ and $\left(2^{\frac{2}{3}}, 2^{\frac{1}{3}}\right)$; that is, show that if $\left(x_{0}, y_{0}\right) \in C \backslash\left\{(0,0),\left(2^{\frac{2}{3}}, 2^{\frac{1}{3}}\right)\right\}$ then there are open sets U containing $\left(x_{0}, y_{0}\right)$ and V containing $f\left(x_{0}, y_{0}\right)$ such that f maps U bijectively to V. What is the derivative of the local inverse function? Deduce that for each point $\left(x_{0}, y_{0}\right) \in C$ other than $(0,0)$ and $\left(2^{\frac{2}{3}}, 2^{\frac{1}{3}}\right)$ there exist open intervals I containing x_{0} and J containing y_{0} such that for each $x \in I$ there is a unique $y \in J$ with $(x, y) \in C$.
