1. Show that $7^{n} \rightarrow 0$ in \mathbb{Z} with the 7 -adic metric.
2. Let $(W, c),(X, d)$ and (Y, e) be metric spaces, let $f: W \rightarrow X$, let $g: X \rightarrow Y$ and let $a \in W$. Suppose f is continuous at a and g is continuous at $f(a)$. Show directly from the definition of continuity that $g \circ f$ is continuous at a.
3. Which of the following subsets of \mathbb{R}^{2} with the Euclidean metric are open? Which are closed? (And why?)
(i) $\{(x, 0): 0 \leq x \leq 1\}$;
(ii) $\{(x, 0): 0<x<1\}$;
(iii) $\{(x, y): y \neq 0\}$;
(iv) $\{(x, y): y=n x$ for some $n \in \mathbb{N}\} \cup\{(x, y): x=0\}$;
(v) $\{(x, y): y=q x$ for some $q \in \mathbb{Q}\} \cup\{(x, y): x=0\}$;
(vi) $\{(x, f(x)): x \in \mathbb{R}\}$, where $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function.
4. Is the set $(1,2]$ an open subset of the metric space \mathbb{R} with the usual metric? Is it closed? What if we replace the metric space \mathbb{R} by the metric space $[0,2$], the metric space $(1,3)$ or the metric space $(1,2]$, in each case with the usual metric?
5. For each of the following sets X, determine whether or not the given function d defines a metric on X. In each case where the function does define a metric, describe the open ball $B_{\varepsilon}(x)$ for $x \in X$ and $\varepsilon>0$ small.
(i) $X=\mathbb{R}^{n} ; d(x, y)=\min \left\{\left|x_{1}-y_{1}\right|,\left|x_{2}-y_{2}\right|, \ldots,\left|x_{n}-y_{n}\right|\right\}$.
(ii) $X=\mathbb{Z} ; d(x, x)=0$, and, for $x \neq y, d(x, y)=2^{n}$ where $x-y=2^{n} a$ with n a non-negative integer and a an odd integer.
(iii) X is the set of functions from \mathbb{N} to $\mathbb{N} ; d(f, f)=0$, and, for $f \neq g, d(f, g)=2^{-n}$ for the least n such that $f(n) \neq g(n)$.
(iv) $X=\mathbb{C} ; d(z, w)=|z-w|$ if z and w lie on the same line through the origin, $d(z, w)=$ $|z|+|w|$ otherwise.
6. For $X, Y \subset \mathbb{R}^{n}$, define $X+Y=\{x+y: x \in X, y \in Y\}$. Give examples of closed sets $X, Y \subset \mathbb{R}^{n}$ for some n such that $X+Y$ is not closed. Show that it is not possible to find such an example with X bounded. If $V, W \subset \mathbb{R}^{n}$ are open, must $V+W$ be open?
7. Is the set $\{f \in C([0,1]) \mid f(1 / 2)=0\}$ closed in the space $C([0,1])$ with the uniform metric? What about the set $\left\{f \in C([0,1]) \mid \int_{0}^{1} f=0\right\}$? In each case, does the answer change if we replace the uniform metric with the L_{1} metric $d(f, g)=\int_{0}^{1}|f-g|$?
8. (a) Explain briefly why the metric space ℓ_{∞} of bounded real sequences with metric $d\left(\left(x_{n}\right),\left(y_{n}\right)\right)=\sup _{n \in \mathbb{N}}\left|x_{n}-y_{n}\right|$ is complete.
(b) Let $\ell_{2}=\left\{\left(x_{n}\right) \in \mathbb{R}^{\mathbb{N}} \mid \sum x_{n}^{2}\right.$ converges $\}$ with metric

$$
d\left(\left(x_{n}\right),\left(y_{n}\right)\right)=\sqrt{\sum_{n=1}^{\infty}\left(x_{n}-y_{n}\right)^{2}}
$$

Prove carefully that d is indeed a well-defined metric on ℓ_{2} and that $\left(\ell_{2}, d\right)$ is complete. Is $\left(\ell_{2}, d\right)$ compact?
9. Let (X, d) be a non-empty complete metric space. Suppose $f: X \rightarrow X$ is a contraction and $g: X \rightarrow X$ is a function which commutes with f, i.e. such that $f(g(x))=g(f(x))$ for all $x \in X$. Show that g has a fixed point. Must this fixed point be unique?
10. Give an example of a non-empty complete metric space (X, d) and a function $f: X \rightarrow X$ satisfying $d(f(x), f(y))<d(x, y)$ for all $x, y \in X$ with $x \neq y$, but such that f has no fixed point. Suppose now that X is compact. Show that in this case f must have a fixed point. If $g: X \rightarrow X$ satisfies $d(g(x), g(y)) \leq d(x, y)$ for all $x, y \in X$, must g have a fixed point?
11. Let (X, d) be a compact metric space and $f: X \rightarrow X$. Suppose $d(f(x), f(y))=d(x, y)$ for all $x, y \in X$. Show that f is bijective.
12. Which functions $f: \mathbb{R} \rightarrow X$ are continuous, where \mathbb{R} has the usual metric and X is a discrete metric space?
13. Let (X, d) be a non-empty complete metric space and let $f: X \rightarrow X$ be a function such that for each positive integer n we have
(i) if $d(x, y)<n+1$ then $d(f(x), f(y))<n$; and
(ii) if $d(x, y)<1 / n$ then $d(f(x), f(y))<1 /(n+1)$.

Must f have a fixed point?
14. Let (X, d) be a non-empty complete metric space, let $f: X \rightarrow X$ be a continuous function, and let $K \in[0,1)$.
(a) Suppose we assume that for all $x, y \in X$ we have either $d(f(x), f(y)) \leq K d(x, y)$ or $d(f(f(x)), f(f(y))) \leq K d(x, y)$. Show that f has a fixed point.
${ }^{+}(\mathrm{b})$ Suppose instead we only assume that for each $x, y \in X$ at least on of the following holds: $d(f(x), f(y)) \leq K d(x, y)$, or $d(f(f(x)), f(f(y))) \leq K d(x, y)$ or $d(f(f(f(x))), f(f(f(y)))) \leq K d(x, y)$. Must f have a fixed point?

