Mich. 2022 ANALYSIS AND TOPOLOGY—EXAMPLES 1 PAR

1. Let (z_n) be a sequence in \mathbb{R}^2 such that $z_n \to a$ and $z_n \to b$. Show that a = b.

2. Let (z_n) and (w_n) be sequences in \mathbb{R}^2 with $z_n \to z$ and $w_n \to w$. Show that the scalar product $z_n \cdot w_n \to z \cdot w$.

3. Let $X \subset \mathbb{R}^2$ and $f: X \to \mathbb{R}$. We say X is closed if whenever (z_n) is a sequence in X with $z_n \to z \in \mathbb{R}^2$ then $z \in X$. We say X is bounded if there is some $M \in \mathbb{R}$ such that for all $z \in X$ we have $||z|| \leq M$. We say f is continuous if for all $z \in X$ and all $\varepsilon > 0$ there is a $\delta > 0$ such that whenever $y \in X$ with $||y - z|| < \delta$ we have $|f(y) - f(z)| < \varepsilon$. Show that if X is closed and bounded and f is continuous then $f(X) \subset \mathbb{R}$ is bounded and there are $z_1, z_2 \in X$ such that $f(z_1) = \inf f(X)$ and $f(z_2) = \sup f(X)$.

4. Prove, by induction on n or otherwise, that a bounded sequence in \mathbb{R}^n must have a convergent subsequence. Prove also that any Cauchy sequence in \mathbb{R}^n must be convergent.

5. Which of the following sequences (f_n) of functions converge uniformly on the set X?

(a) $f_n(x) = x^n$ on X = (0, 1); (b) $f_n(x) = xe^{-nx}$ on $X = [0, \infty)$; (c) $f_n(x) = e^{-x^2} \sin(x/n)$ on $X = \mathbb{R}$.

6. Construct a sequence (f_n) of *continuous* real-valued functions on [-1, 1] converging pointwise to the zero function but with $\int_{-1}^{1} f_n \neq 0$. ⁺Is it possible to find such a sequence with $|f_n(x)| \leq 1$ for all n and for all x?

7. Let (f_n) and (g_n) be sequences of real-valued functions on a subset X of \mathbb{R} converging uniformly to f and g respectively. Show that the pointwise sum $f_n + g_n$ converges uniformly to f + g. On the other hand, show that the pointwise product $f_n g_n$ need not converge uniformly to fg, but that if both f and g are bounded then $f_n g_n$ does converge uniformly to fg. What if f is bounded but g is not?

8. Let (f_n) be a sequence of real-valued continuous functions on a closed, bounded interval [a, b], and suppose that f_n converges pointwise to a continuous function f. Show that if $f_n \to f$ uniformly and (x_m) is a sequence of points in [a, b] with $x_m \to x$ then $f_n(x_n) \to f(x)$. On the other hand, show that if f_n does not converge uniformly to f then we can find a convergent sequence $x_m \to x$ in [a, b] such that $f_n(x_n) \to f(x)$.

9. Which of the following functions $f:[0,\infty) \to \mathbb{R}$ are (a) uniformly continuous; (b) bounded?

(i)
$$f(x) = \sin x^2$$
; (ii) $f(x) = \inf\{|x - n^2| : n \in \mathbb{N}\};$ (iii) $f(x) = (\sin x^3)/(x+1)$

10. Show that if (f_n) is a sequence of uniformly continuous, real-valued functions on \mathbb{R} , and if $f_n \to f$ uniformly, then f is uniformly continuous. Give an example of a sequence of uniformly continuous, real-valued functions (f_n) on \mathbb{R} such that f_n converges pointwise to a function f which is continuous but not uniformly continuous.

11. Let $X \subset \mathbb{R}^2$ and $f: X \to \mathbb{R}^2$. Write down sensible definitions of what it should mean for f to be *continuous* and for f to be *uniformly continuous*. Show that if X is closed and bounded and f is continuous then f must be uniformly continuous.

12. Show that, for any $x \in X = \mathbb{R} - \{1, 2, 3, ...\}$, the series $\sum_{m=1}^{\infty} (x - m)^{-2}$ converges. Define $f: X \to \mathbb{R}$ by $f(x) = \sum_{m=1}^{\infty} (x - m)^{-2}$, and for n = 1, 2, 3, ..., define $f_n: X \to \mathbb{R}$ by $f_n(x) = \sum_{m=1}^{n} (x - m)^{-2}$. Does the sequence (f_n) converge uniformly to f on X? Is f continuous?

13. Let $f_n: \mathbb{N} \to \mathbb{R}$ for each $n \ge 1$. Suppose (f_n) is pointwise bounded. Must it have a pointwise convergent subsequence? What if we replace \mathbb{N} with \mathbb{R} ?

14. Construct a function $f:[0,1] \to \mathbb{R}$ which is not the pointwise limit of any sequence of continuous functions.

15. Let (f_n) be a pointwise bounded sequence of continuous, real-valued functions on [0, 1]. Show that there is some subinterval [a, b] of [0, 1] with a < b on which (f_n) is uniformly bounded.