1. Let $\left(z_{n}\right)$ be a sequence in \mathbb{R}^{2} such that $z_{n} \rightarrow a$ and $z_{n} \rightarrow b$. Show that $a=b$.
2. Let $\left(z_{n}\right)$ and $\left(w_{n}\right)$ be sequences in \mathbb{R}^{2} with $z_{n} \rightarrow z$ and $w_{n} \rightarrow w$. Show that the scalar product $z_{n} \cdot w_{n} \rightarrow z \cdot w$.
3. Let $X \subset \mathbb{R}^{2}$ and $f: X \rightarrow \mathbb{R}$. We say X is closed if whenever $\left(z_{n}\right)$ is a sequence in X with $z_{n} \rightarrow z \in \mathbb{R}^{2}$ then $z \in X$. We say X is bounded if there is some $M \in \mathbb{R}$ such that for all $z \in X$ we have $\|z\| \leqslant M$. We say f is continuous if for all $z \in X$ and all $\varepsilon>0$ there is a $\delta>0$ such that whenever $y \in X$ with $\|y-z\|<\delta$ we have $|f(y)-f(z)|<\varepsilon$. Show that if X is closed and bounded and f is continuous then $f(X) \subset \mathbb{R}$ is bounded and there are $z_{1}, z_{2} \in X$ such that $f\left(z_{1}\right)=\inf f(X)$ and $f\left(z_{2}\right)=\sup f(X)$.
4. Prove, by induction on n or otherwise, that a bounded sequence in \mathbb{R}^{n} must have a convergent subsequence. Prove also that any Cauchy sequence in \mathbb{R}^{n} must be convergent.
5. Which of the following sequences $\left(f_{n}\right)$ of functions converge uniformly on the set X ?
(a) $f_{n}(x)=x^{n}$ on $X=(0,1)$;
(b) $f_{n}(x)=x e^{-n x}$ on $X=[0, \infty)$;
(c) $f_{n}(x)=e^{-x^{2}} \sin (x / n)$ on $X=\mathbb{R}$.
6. Construct a sequence $\left(f_{n}\right)$ of continuous real-valued functions on $[-1,1]$ converging pointwise to the zero function but with $\int_{-1}^{1} f_{n} \nrightarrow 0 .{ }^{+}$Is it possible to find such a sequence with $\left|f_{n}(x)\right| \leq 1$ for all n and for all x ?
7. Let $\left(f_{n}\right)$ and $\left(g_{n}\right)$ be sequences of real-valued functions on a subset X of \mathbb{R} converging uniformly to f and g respectively. Show that the pointwise sum $f_{n}+g_{n}$ converges uniformly to $f+g$. On the other hand, show that the pointwise product $f_{n} g_{n}$ need not converge uniformly to $f g$, but that if both f and g are bounded then $f_{n} g_{n}$ does converge uniformly to $f g$. What if f is bounded but g is not?
8. Let $\left(f_{n}\right)$ be a sequence of real-valued continuous functions on a closed, bounded interval $[a, b]$, and suppose that f_{n} converges pointwise to a continuous function f. Show that if $f_{n} \rightarrow f$ uniformly and $\left(x_{m}\right)$ is a sequence of points in $[a, b]$ with $x_{m} \rightarrow x$ then $f_{n}\left(x_{n}\right) \rightarrow f(x)$. On the other hand, show that if f_{n} does not converge uniformly to f then we can find a convergent sequence $x_{m} \rightarrow x$ in $[a, b]$ such that $f_{n}\left(x_{n}\right) \nrightarrow f(x)$.
9. Which of the following functions $f:[0, \infty) \rightarrow \mathbb{R}$ are (a) uniformly continuous; (b) bounded?
(i) $f(x)=\sin x^{2}$;
(ii) $f(x)=\inf \left\{\left|x-n^{2}\right|: n \in \mathbb{N}\right\}$;
(iii) $f(x)=\left(\sin x^{3}\right) /(x+1)$.
10. Show that if $\left(f_{n}\right)$ is a sequence of uniformly continuous, real-valued functions on \mathbb{R}, and if $f_{n} \rightarrow f$ uniformly, then f is uniformly continuous. Give an example of a sequence of uniformly continuous, realvalued functions $\left(f_{n}\right)$ on \mathbb{R} such that f_{n} converges pointwise to a function f which is continuous but not uniformly continuous.
11. Let $X \subset \mathbb{R}^{2}$ and $f: X \rightarrow \mathbb{R}^{2}$. Write down sensible definitions of what it should mean for f to be continuous and for f to be uniformly continuous. Show that if X is closed and bounded and f is continuous then f must be uniformly continuous.
12. Show that, for any $x \in X=\mathbb{R}-\{1,2,3, \ldots\}$, the series $\sum_{m=1}^{\infty}(x-m)^{-2}$ converges. Define $f: X \rightarrow \mathbb{R}$ by $f(x)=\sum_{m=1}^{\infty}(x-m)^{-2}$, and for $n=1,2,3, \ldots$, define $f_{n}: X \rightarrow \mathbb{R}$ by $f_{n}(x)=\sum_{m=1}^{n}(x-m)^{-2}$. Does the sequence $\left(f_{n}\right)$ converge uniformly to f on X ? Is f continuous?
13. Let $f_{n}: \mathbb{N} \rightarrow \mathbb{R}$ for each $n \geqslant 1$. Suppose $\left(f_{n}\right)$ is pointwise bounded. Must it have a pointwise convergent subsequence? What if we replace \mathbb{N} with \mathbb{R} ?
14. Construct a function $f:[0,1] \rightarrow \mathbb{R}$ which is not the pointwise limit of any sequence of continuous functions.
15. Let $\left(f_{n}\right)$ be a pointwise bounded sequence of continuous, real-valued functions on $[0,1]$. Show that there is some subinterval $[a, b]$ of $[0,1]$ with $a<b$ on which $\left(f_{n}\right)$ is uniformly bounded.
