1. Let $\left(T_{k}\right)_{k \in \mathbb{N}}$ be a sequence in $L\left(\mathbb{R}^{m}, \mathbb{R}^{n}\right)$. Show that if $T_{n} \rightarrow 0$ in the euclidean metric, then $T_{n} \rightarrow 0$ pointwise. Is the converse true? Do your answers change if $\left(T_{k}\right)$ is a sequence in $\operatorname{Bil}\left(\mathbb{R}^{m} \times \mathbb{R}^{n}, \mathbb{R}^{p}\right)$?
2. At which points is each of the following functions $\mathbb{R}^{2} \rightarrow \mathbb{R}$ differentiable?
(i) $f(x, y)=|x||y|$;
(ii) $g(x, y)=x y \sin (1 / x)$ when $x \neq 0$ and $g(0, y)=0$;
(iii) $h(x, y)=\frac{x y}{\left(x^{2}+y^{2}\right)^{1 / 2}}$ when $(x, y) \neq(0,0)$ and $h(0,0)=0$.
3. Consider the map $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by $f(x)=x /\|x\|$ if $x \neq 0$ and $f(0)=0$. Show that f is differentiable on $\mathbb{R}^{3} \backslash\{0\}$ with

$$
f^{\prime}(x)(h)=\frac{h}{\|x\|}-\frac{\langle x, h\rangle x}{\|x\|^{3}} .
$$

Verify that $f^{\prime}(x)(h)$ is orthogonal to x and explain geometrically why this is the case.
4. (a) Show that the set \mathcal{G}_{n} of invertible $n \times n$ real matrices is an open subset of \mathcal{M}_{n}. By quoting appropriate results, explain why the function $f: \mathcal{G}_{n} \rightarrow \mathcal{M}_{n}$ given by $f(A)=A^{-1}$ is differentiable.
(b) Given an open subset U of \mathcal{M}_{n}, show that if functions $g, h: U \rightarrow \mathcal{M}_{n}$ are differentiable at $A \in U$, then so is the product $g h$ given by $(g h)(X)=g(X) h(X)$. Hence, or otherwise, find the derivative of the function f given in part (a).
5. Show that the function det: $\mathcal{M}_{n} \rightarrow \mathbb{R}$ is differentiable at the identity matrix I with $\operatorname{det}^{\prime}(I)(H)=\operatorname{tr}(H)$. Deduce that det is differentiable at every invertible matrix A with $\operatorname{det}^{\prime}(A)(H)=\operatorname{det}(A) \operatorname{tr}\left(A^{-1} H\right)$. Show further that det is twice differentiable at I and find $\operatorname{det}^{\prime \prime}(I)$ as a bilinear map. Is det differentiable at any non-invertible matrix?
6. Assume that all directional derivatives $D_{u} f(0)$ exist for $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, and moreover the map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $T(u)=D_{u} f(0)$ if $u \neq 0$ and $T(0)=0$ is linear. Does it follow that f is differentiable at 0 ? What if we assume instead that $f \circ \gamma$ is differentiable at 0 for every differentiable curve $\gamma:(-1,1) \rightarrow \mathbb{R}^{2}$ with $\gamma(0)=0$?
7. Let $U \subset \mathbb{R}^{2}$ be an open set and $f: U \rightarrow \mathbb{R}$ be a function such that for each $x \in \mathbb{R}$ the map $y \mapsto f(x, y)$ is continuous, and for each $y \in \mathbb{R}$ the map $x \mapsto f(x, y)$ is continuous. Show that f need not be continuous on U. Now assume that $D_{1} f$ exists and is bounded on U and that for each $x \in \mathbb{R}$ the map $y \mapsto f(x, y)$ is continuous. Show that f is continuous.
8. Define $f: \mathcal{M}_{n} \rightarrow \mathcal{M}_{n}$ by $f(A)=A^{2}$. Show that f is continuously differentiable on \mathcal{M}_{n}. Deduce that there is a continuous square-root function on some neighbourhood of I : there exist $r>0$ and a continuous function $g: D_{r}(I) \rightarrow \mathcal{M}_{n}$ such that $g(A)^{2}=A$ for all $A \in D_{r}(I)$. Is it possible to define a continuous square-root function on the whole of \mathcal{M}_{n} ?
9. Let $C=\left\{(x, y) \in \mathbb{R}^{2}: x^{3}+y^{3}-3 x y=0\right\}$. Define a function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $F(x, y)=\left(x, x^{3}+y^{3}-3 x y\right)$. Show that for every $\left(x_{0}, y_{0}\right) \in C \backslash\left\{(0,0),\left(2^{\frac{2}{3}}, 2^{\frac{1}{3}}\right)\right\}$ there are open sets U containing $\left(x_{0}, y_{0}\right)$ and V containing $F\left(x_{0}, y_{0}\right)$ such that $F \upharpoonright_{U}$ is a bijection from U onto V with a continuously differentiable inverse. Deduce that for every such point $\left(x_{0}, y_{0}\right)$ there is an open neighbourhood U of $\left(x_{0}, y_{0}\right)$, an open interval I containing x_{0} and a continuously differentiable function $g: I \rightarrow \mathbb{R}$ such that $g\left(x_{0}\right)=y_{0}$ and $C \cap U$ is the graph of g, i.e., $C \cap U=\left\{(x, y) \in \mathbb{R}^{2}: x \in I, y=g(x)\right\}$.
10. Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $f(0,0)=0$ and

$$
f(x, y)=\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}} \quad \text { if }(x, y) \neq(0,0)
$$

Show that $D_{1} D_{2} f$ and $D_{2} D_{1} f$ exist on \mathbb{R}^{2} and take the value 1 and -1 at $(0,0)$, respectively. Where are $D_{1} D_{2} f$ and $D_{2} D_{1} f$ continuous?
11. Let $U \subset \mathbb{R}^{m}$ be an open set, and $f: U \rightarrow \mathbb{R}^{n}$ be differentiable on U. Show carefully that if f^{\prime} has directional derivative $D_{u} f^{\prime}(a)$ for some $a \in U$ and $u \in \mathbb{R}^{m} \backslash\{0\}$, then for every $v \in \mathbb{R}^{m} \backslash\{0\}$, the directional derivative $D_{u} D_{v} f(a)$ exists and equals $D_{u} f^{\prime}(a)(v)$.
12. Let U be an open subset of \mathbb{R}^{2} containing the rectangle $[a, b] \times[c, d]$. Suppose that $f: U \rightarrow \mathbb{R}$ is continuous and that $D_{2} f$ exists and is continuous on U. Show that $F(y)=\int_{a}^{b} f(x, y) \mathrm{d} x$ is differentiable on some open interval containing $[c, d]$ with $F^{\prime}(y)=\int_{a}^{b} D_{2} f(x, y) \mathrm{d} x$.
13. Let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ be twice differentiable functions on \mathbb{R}^{m} and \mathbb{R}^{n}, respectively. Show that $g \circ f$ is twice differentiable on \mathbb{R}^{m} and find $(g \circ f)^{\prime \prime}$.

