1. Prove the following statements.
(i) In a topological space, every subsequence of a convergent sequence is convergent.
(ii) In a metric space, a Cauchy sequence with a convergent subsequence is convergent.
2. Which of the following subsets of \mathbb{R}^{2} are open? Which are closed? (And why?)
(i) $\{(x, 0): 0 \leqslant x \leqslant 1\}$;
(ii) $\{(x, 0): 0<x<1\}$;
(iii) $\{(x, y): y \neq 0\}$;
(iv) $\bigcup_{n \in \mathbb{N}}\{(x, y): y=n x\} \cup\{(0, y): y \in \mathbb{R}\}$;
(v) $\bigcup_{q \in \mathbb{Q}}\{(x, y): y=q x\} \cup\{(0, y): y \in \mathbb{R}\}$;
(vi) $\{(x, f(x)): x \in \mathbb{R}\}$, where $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function.
3. Is the set $(1,2]$ an open subset of \mathbb{R} ? Is it closed? What if we replace \mathbb{R} with the subspace $(1,3),[0,2]$ or $(1,2]$?
4. Let M, N be metric spaces, and let $A \subset M$ and $B \subset N$. Show that if both A and B are open/closed/bounded, then so is $A \times B$ in the product metric space $M \oplus_{\infty} N$.
5. Let M be a metric space and $A \subset M$. Prove that
$\bar{A}=\left\{x \in M: \exists\left(x_{n}\right)\right.$ in A such that $\left.x_{n} \rightarrow x\right\} \quad$ and $\quad A^{\circ}=\left\{x \in M: \exists r>0 D_{r}(x) \subset A\right\}$.
Show further that if A is non-empty, then $x \mapsto d(x, A)=\inf \{d(x, a): a \in A\}$ is a 1-Lipschitz map $M \rightarrow \mathbb{R}$ and that $\bar{A}=\{x \in M: d(x, A)=0\}$. Deduce, or otherwise show, that if A and B are disjoint closed subsets of M, then there exist disjoint open subsets U and V of M such that $A \subset U$ and $B \subset V$.

Finally, show that the inclusions $D_{r}(x) \subset B_{r}(x)^{\circ}$ and $\overline{D_{r}(x)} \subset B_{r}(x)$ hold in every metric space and can be strict in general but that they are always equalities in \mathbb{R}^{n}.
6. Which of the following metric spaces are complete?
(i) $C^{1}[0,1]=\{f:[0,1] \rightarrow \mathbb{R}: f$ continuously differentiable $\}$ in the uniform metric D;
(ii) $C^{1}[0,1]$ in the metric $D^{\prime}(f, g)=D(f, g)+D\left(f^{\prime}, g^{\prime}\right)$;
(iii) $C[0,1]$ in the L_{1}-metric.
(iv) \mathbb{Z} in the 2-adic metric.
7. Let X be an uncountable set. Show that the family τ consisting of the emptyset and all subsets of X with countable complement is a topology on X. Fix $x \in X$ and let $Y=X \backslash\{x\}$. Show that Y is dense in X but no sequence in Y converges to x. Is the space (X, τ) metrizable? Identify the convergent sequences in X and the continuous functions $X \rightarrow \mathbb{R}$.
8. The diagonal of a set Y is the set $\Delta_{Y}=\{(x, y) \in Y \times Y: x=y\}$. Show that a topological space Y is Hausdorff if and only if Δ_{Y} is closed in $Y \times Y$. Deduce or otherwise show that if $f, g: X \rightarrow Y$ are continuous functions from a space X to a Hausdorff space Y, then $\{x \in X: f(x)=g(x)\}$ is closed in X; in particular, if f and g agree on a dense subset of X, then $f=g$ on X.
9. Let X be a topological space. Show that the set $C(X)=\{f: X \rightarrow \mathbb{R}: f$ is continuous $\}$ is a linear subspace of the real vector space of all functions $X \rightarrow \mathbb{R}$. Show that if $f_{n} \rightarrow f$ locally uniformly on X and $f_{n} \in C(X)$ for all n, then $f \in C(X)$. Deduce that $C_{b}(X)=C(X) \cap \ell_{\infty}(X)$ is complete in the uniform metric.
10. (a) Show that a space with a countable base is separable and that every separable metric space has a countable base. Deduce that a subspace of a separable metric space is separable.
(b) Prove that the family of all half-open intervals $[a, b)$ in \mathbb{R} is a base for a topology τ on \mathbb{R}. Let $X=(\mathbb{R}, \tau)$. Show that X is separable but has no countable base. Show that $X \times X$ with the product topology is separable. Identify the subspace topology on $Y=\left\{(x, y) \in \mathbb{R}^{2}: x+y=0\right\}$. Is Y separable?
11. (a) Show that there is a metric on \mathbb{R} which is equivalent to the usual metric but in which \mathbb{R} is not complete.
(b) Let d and d^{\prime} be equivalent metrics on a set M. Show that if d and d^{\prime} are uniformly equivalent, then (M, d) and $\left(M, d^{\prime}\right)$ have the same Cauchy sequences (and hence one is complete if and only if the other is complete). If (M, d) and (M, d^{\prime}) have the same Cauchy sequences, does it follow that d and d^{\prime} are uniformly equivalent?
12. Let f be a contraction mapping on a non-empty complete metric space M (so Lipschitz with constant $\lambda<1$). Fix $x_{0} \in M$ and define $\left(x_{n}\right)$ recursively by $x_{n}=f\left(x_{n-1}\right)$ for all $n \in \mathbb{N}$. The proof of the Contraction Mapping Theorem shows that $\left(x_{n}\right)$ converges to the unique fixed point z of f. Prove that $d\left(x_{n}, z\right) \leqslant \frac{\lambda}{1-\lambda} d\left(x_{n-1}, x_{n}\right)$ for all $n \in \mathbb{N}$.

Show that $\cos x=x$ has a unique solution in \mathbb{R}. Using a calculator, find a good approximation to this solution and justify the claimed accuracy of your approximation using the above result.
13. Let $f: M \rightarrow M$ be a function on a non-empty complete metric space M. Assume that for some $k \geqslant 1$, the k-fold composition $f \circ \cdots \circ f$ of f with itself is a contraction mapping. Show that f has a unique fixed point. Deduce that for any $y \in \mathbb{R}$, the initial value problem

$$
f^{\prime}(t)=f\left(t^{2}\right), \quad f(0)=y
$$

has a unique solution on the interval $[0,1]$.
14. We are given a nested sequence $A_{1} \supset A_{2} \supset \ldots$ of non-empty closed subsets of a complete metric space. Assume that the diameter $\operatorname{diam}\left(A_{n}\right)=\sup \left\{d(x, y): x, y \in A_{n}\right\}$ converges to zero. Show that the intersection $\bigcap_{n \in \mathbb{N}} A_{n}$ is non-empty. Is it true that a nested sequence of closed balls in a complete metric space has non-empty intersection?

