1. Which of the following sequences $\left(f_{n}\right)$ of functions converge uniformly on the set X ?
(i) $f_{n}(x)=x^{n}$ on $X=(0,1)$;
(ii) $f_{n}(x)=x^{n}(1-x)$ on $X=[0,1]$;
(iii) $f_{n}(x)=\mathrm{e}^{-x^{2}} \sin (x / n)$ on $X=\mathbb{R}$.
2. Suppose functions $f_{n} \rightarrow f$ and $g_{n} \rightarrow g$ uniformly on a set S. Show that $f_{n}+g_{n} \rightarrow f+g$ uniformly on S. On the other hand, show that the pointwise product $f_{n} g_{n}$ need not converge uniformly to $f g$ but that if both f and g are bounded then $f_{n} g_{n}$ does converge uniformly to $f g$. What if f is bounded but g is not?
3. Construct a sequence $\left(f_{n}\right)$ of continuous real-valued functions on $[0,1]$ converging pointwise to the zero function but with $\int_{0}^{1} f_{n}(x) \mathrm{d} x \nrightarrow 0 .{ }^{+}$Is it possible to find such a sequence with $\left|f_{n}(x)\right| \leqslant 1$ for all x and for all n ?
Construct a sequence $\left(f_{n}\right)$ of differentiable real-valued functions on $[0,1]$ converging uniformly to a function f which is not differentiable on the whole of $[0,1]$.
4. Which of the following functions $f:[0, \infty) \rightarrow \mathbb{R}$ are uniformly continuous?
(i) $f(x)=\sin x^{2}$;
(ii) $f(x)=\inf \left\{\left|x-n^{2}\right|: n \in \mathbb{N}\right\}$;
(iii) $f(x)=\left(\sin x^{3}\right) /(x+1)$.
5. For each of the following sets X, determine whether or not the given function d defines a metric on X. In each case where the function does define a metric, describe the open ball $D_{r}(x)$ for $x \in X$ and $r>0$ small.
(i) $\quad X=\mathcal{R}[0,1]$, the space of intergrable functions on $[0,1] ; d(f, g)=\int_{0}^{1}|f(x)-g(x)| \mathrm{d} x$.
(ii) $\quad X=\mathbb{Z} ; d(x, x)=0$ and, for $x \neq y, d(x, y)=2^{n}$ where $x-y=2^{n} a$ with n a non-negative integer and a an odd integer.
(iii) $X=\mathbb{N}^{\mathbb{N}} ; d(f, f)=0$ and, for $f \neq g, d(f, g)=2^{-n}$ for the least n such that $f(n) \neq g(n)$.
(iv) $X=\mathbb{C} ; d(z, w)=|z-w|$ if z and w lie on the same line through the origin, $d(z, w)=$ $|z|+|w|$ otherwise.
6. Let $\left(x^{(m)}\right)$ and $\left(y^{(m)}\right)$ be sequences in \mathbb{R}^{n} converging to x and y, respectively. Show that the scalar product $x^{(m)} \cdot y^{(m)}$ converges to $x \cdot y$. Deduce that if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ are continuous at x, then so is the pointwise scalar product $f \cdot g: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
7. Show that the uniform limit of uniformly continuous scalar functions on a metric space is uniformly continuous. Give an example of uniformly continuous functions $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ converging pointwise to a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ that is not uniformly continuous.
8. Let $\left(f_{n}\right)$ be a sequence of scalar functions on a set S. In each of the following two cases, write out in symbols statement (i) and compare it to (ii). Prove that (i) implies (ii) if $\left(f_{n}\right)$ is uniformly Cauchy.
(a) (i) Each f_{n} is bounded.
(ii) $\exists M \in \mathbb{R} \quad \forall n \in \mathbb{N} \quad \forall x \in S \quad\left|f_{n}(x)\right| \leqslant M$
(b) In this case assume that S is a metric space.
(i) Each f_{n} is continuous.
(ii) $\forall a \in S \quad \forall \varepsilon>0 \quad \exists \delta>0 \quad \forall n \in \mathbb{N} \quad \forall x \in S \quad d(x, a)<\delta \Longrightarrow\left|f_{n}(x)-f_{n}(a)\right|<\varepsilon$
9. Let $f_{n}, n \in \mathbb{N}$, and f be continuous scalar functions on a metric space M. Show that if $f_{n} \rightarrow f$ uniformly on M and $x_{n} \rightarrow x$ in M, then $f_{n}\left(x_{n}\right) \rightarrow f(x)$. On the other hand, show that if $M=[a, b]$ is a closed bounded interval and $\left(f_{n}\right)$ does not converge uniformly to f, then there is a convergent sequence $x_{n} \rightarrow x$ in M such that $f_{n}\left(x_{n}\right) \nrightarrow f(x)$.
10. Show that for each $x \in X=\mathbb{R} \backslash \mathbb{N}$ the series $\sum_{n=1}^{\infty}(x-n)^{-2}$ converges. Does the series converge uniformly on X ? Define $f: X \rightarrow \mathbb{R}$ by $f(x)=\sum_{n=1}^{\infty}(x-n)^{-2}$. Show that f is continuously differentiable on X and find its derivative.
11. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable and assume that f^{\prime} is bounded. Show that f is a Lipschitz function. Define $g:[-1,1] \rightarrow \mathbb{R}$ by $g(x)=x^{2} \sin \left(1 / x^{2}\right)$ for $x \neq 0$ and $g(0)=0$. Show that g is differentiable on $[-1,1]$. Is g a Lipschitz function? Is g uniformly continuous?
12. Generalize (i) of Q4 by replacing x^{2} with an arbitrary continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ that is not uniformly continuous. Can $\sin f(x)$ ever be uniformly continuous?
13. Let $\left(f_{n}\right)$ be a sequence of continuous real-valued functions on $[0,1]$ converging pointwise to a function f. Prove that there is some subinterval $[a, b]$ of $[0,1]$ with $a<b$ on which f is bounded.
