

1. Which of the following sequences (f_n) of functions converge uniformly on the set X ?

(i) $f_n(x) = x^n$ on $X = (0, 1)$; (ii) $f_n(x) = x^n(1 - x)$ on $X = [0, 1]$;
 (iii) $f_n(x) = e^{-x^2} \sin(x/n)$ on $X = \mathbb{R}$.

2. Suppose functions $f_n \rightarrow f$ and $g_n \rightarrow g$ uniformly on a set S . Show that $f_n + g_n \rightarrow f + g$ uniformly on S . On the other hand, show that the pointwise product $f_n g_n$ need not converge uniformly to fg but that if both f and g are bounded then $f_n g_n$ does converge uniformly to fg . What if f is bounded but g is not?

3. Construct a sequence (f_n) of continuous real-valued functions on $[0, 1]$ converging pointwise to the zero function but with $\int_0^1 f_n(x) dx \not\rightarrow 0$. Is it possible to find such a sequence with $|f_n(x)| \leq 1$ for all x and for all n ?

Construct a sequence (f_n) of differentiable real-valued functions on $[0, 1]$ converging uniformly to a function f which has at least one point of non-differentiability.

4. Which of the following functions $f: [0, \infty) \rightarrow \mathbb{R}$ are uniformly continuous?

(i) $f(x) = \sin x^2$; (ii) $f(x) = \inf \{|x - n^2| : n \in \mathbb{N}\}$; (iii) $f(x) = (\sin x^3)/(x + 1)$.

5. Show that the uniform limit of uniformly continuous real-valued functions on a metric space is uniformly continuous. Give an example of a sequence (f_n) of uniformly continuous, real-valued functions on \mathbb{R} that converges pointwise to a continuous function f that is not uniformly continuous.

6. Suppose that $f: [0, \infty) \rightarrow \mathbb{R}$ is continuous and that $f(x)$ tends to a (finite) limit as $x \rightarrow \infty$. Must f be uniformly continuous on $[0, \infty)$? Give a proof or counterexample as appropriate.

7. For each of the following sets X , determine whether or not the given function d defines a metric on X . In each case where the function does define a metric, describe the open ball $D_r(x)$ for $x \in X$ and $r > 0$ small.

(i) $X = \mathcal{R}[0, 1]$, the space of integrable functions on $[0, 1]$; $d(f, g) = \int_0^1 |f(x) - g(x)| dx$.

(ii) $X = \mathbb{Z}$; $d(x, x) = 0$ and, for $x \neq y$, $d(x, y) = 2^n$ where $x - y = 2^n a$ with n a non-negative integer and a an odd integer.

(iii) $X = \mathbb{N}^\mathbb{N}$; $d(f, f) = 0$ and, for $f \neq g$, $d(f, g) = 2^{-n}$ for the least n such that $f(n) \neq g(n)$.

(iv) $X = \mathbb{C}$; $d(z, w) = |z - w|$ if z and w lie on the same line through the origin, $d(z, w) = |z| + |w|$ otherwise.

8. Let f_n , $n \in \mathbb{N}$, and f be real-valued continuous functions on the closed bounded interval $[a, b]$. Show that if $f_n \rightarrow f$ uniformly on $[a, b]$ and $x_n \rightarrow x$ in $[a, b]$, then $f_n(x_n) \rightarrow f(x)$. On the other hand, show that if (f_n) does not converge uniformly to f , then there is a convergent sequence $x_n \rightarrow x$ in $[a, b]$ such that $f_n(x_n) \not\rightarrow f(x)$.

9. Show that for each $x \in X = \mathbb{R} \setminus \mathbb{N}$ the series $\sum_{n=1}^{\infty} (x - n)^{-2}$ converges. Does the series converge uniformly on X ? Define $f: X \rightarrow \mathbb{R}$ by $f(x) = \sum_{n=1}^{\infty} (x - n)^{-2}$. Show that f is continuously differentiable on X and find its derivative.

10. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable and assume that f' is bounded. Show that f is a Lipschitz function. Define $g: [-1, 1] \rightarrow \mathbb{R}$ by $g(x) = x^2 \sin(1/x^2)$ for $x \neq 0$ and $g(0) = 0$. Show that g is differentiable on $[-1, 1]$. Is g a Lipschitz function? Is g uniformly continuous?

11. Let $f: [0, 1] \times [0, 1] \rightarrow \mathbb{R}$ be continuous. Show that f is uniformly continuous, and hence prove the following.

- (i) The function $g: [0, 1] \rightarrow \mathbb{R}$, defined by $g(y) = \int_0^1 f(x, y) dx$, is continuous.
- (ii) There is a sequence of step functions on $[0, 1] \times [0, 1]$ converging uniformly to f . (A step function is a function of the form $\sum_{i=1, j=1}^{m, n} c_{i,j} \mathbf{1}_{J_i \times K_j}$ where $[0, 1] = \bigcup_{i=1}^m J_i = \bigcup_{j=1}^n K_j$ are partitions of $[0, 1]$ into intervals, $\mathbf{1}_S$ is the indicator function of a set S and the $c_{i,j}$ are real numbers.)
- (iii) $\int_0^1 \int_0^1 f(x, y) dx dy = \int_0^1 \int_0^1 f(x, y) dy dx$.

12. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous but not uniformly continuous function. Define $g: \mathbb{R} \rightarrow \mathbb{R}$ by $g(x) = \sin(f(x))$ for $x \in \mathbb{R}$. Show that g is continuous but not uniformly continuous.

13. Let (f_n) be a sequence of continuous real-valued functions on $[0, 1]$ converging pointwise to a function f . Prove that there is some subinterval $[a, b]$ of $[0, 1]$ with $a < b$ on which f is bounded.