
ANALYSIS II EXAMPLES 4

G.P. Paternain Mich. 2002

The questions on this sheet are not all equally difficult and the harder ones are marked with ∗’s.
Comments on and/or corrections to the questions on this sheet are always welcome, and may be e-
mailed to me at g.p.paternain@dpmms.cam.ac.uk. The questions are based on the example sheets
I gave last year, but I have made a few changes.

1. For each of the following sets X, determine whether the given function d defines a metric on X:
(i) X = Rn, d(x, y) = min{|x1 − y1|, . . . , |xn − yn|}.
(ii) X = Z, d(x, x) = 0 for all x, otherwise d(x, y) = 2n if x− y = 2na where a is odd.
(iii) X = Q, d(x, x) = 0 for all x, otherwise d(x, y) = 3−n if x − y = 3na/b where a, b are prime

to 3 (and n may be positive, negative or zero).
(iv) X = {functions N → N}, d(f, f) = 0, otherwise d(f, g) = 2−n for the least n such that

f(n) 6= g(n).
(v) X = C, d(z, w) = |z − w| if z and w are on the same straight line through 0, otherwise

d(z, w) = |z|+ |w|.

2. A metric d on a set X is called an ultrametric if it satisfies the following stronger form of the
triangle inequality:

d(x, z) ≤ max{d(x, y), d(y, z)} for all x, y, z ∈ X .

Which of the metrics in question 1 are ultrametrics? Show that in an ultrametric space ‘every
triangle is isosceles’ (that is, at least two of d(x, y), d(y, z) and d(x, z) must be equal), and deduce
that every open ball in an ultrametric space is a closed set. Does it follow that every open set must
be closed?

3. There is a persistent ‘urban myth’ about the mathematics research student who spent three years
writing a thesis about properties of ‘antimetric spaces’, where an antimetric on a set X is a function
d : X ×X → R satisfying the same axioms as a metric except that the triangle inequality is reversed
(i.e. d(x, z) ≥ d(x, y) + d(y, z) for all x, y, z). Why would such a thesis be unlikely to be considered
worth a Ph.D.?

*4. [Tripos IB 93301(b)] Let (X, d) be a metric space without isolated points (i.e. such that {x} is
not open for any x ∈ X), and (xn)n≥0 a sequence of points of X. Show that it is possible to find a
sequence of points yn of X and positive real numbers rn such that rn → 0, d(xn, yn) > rn and

B(yn, rn) ⊆ B(yn−1, rn−1)

for each n > 0. Deduce that a nonempty complete metric space without isolated points has un-
countably many points. [This is a direct generalization of the familiar proof of uncountability of R
using decimal expansions: can you see why?]

5. (i) Consider the space of real sequences a = (an)∞n=1 such that all but finitely many of the an are
zero, introduced in Sheet 2, Exercise 11. Show that the norm defined by

||a||1 =
∞∑

n=1

|an|

is not complete.
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(ii) Consider C[a, b] the space of continuous functions on [a, b] and show that

d(f, g) =
∫ b

a

|f(x)− g(x)| dx,

is a metric. Is (C[a, b], d) complete?

6. [Tripos IB 96401(b), modified] (i) Let (X, d) be a nonempty complete metric space, and let f :
X → X be a continuous map such that, for any two points x, y of X, the sum

∑∞
n=1 d(fn(x), fn(y))

converges. Show that f has a unique fixed point.
(ii) By considering the function x 7→ max{x − 1, 0} on the interval [0,∞) ⊆ R, show that a

function satisfying the hypotheses of (i) need not be a contraction mapping.
(iii) Let φ be a continuous real-valued function on R× [a, b] which satisfies the Lipschitz condition

|φ(x, t)− φ(y, t)| ≤ M |x− y| , for all x, y ∈ R and t ∈ [a, b],

and let g ∈ C[a, b]. Define F : C[a, b] → C[a, b] by

F (h)(t) = g(t) +
∫ t

a

φ(h(s), s) ds .

Show by induction that

|Fn(h)(t)− Fn(k)(t)| ≤ 1
n!

Mn(t− a)n ‖h− k‖∞ ,

for all h, k ∈ C[a, b] and a ≤ t ≤ b, and deduce that F has a unique fixed point.
(iv) In the original 1996 Tripos question from which this question was adapted, the word ‘contin-

uous’ in the second line of part (i) was accidentally omitted. Give a counterexample to the result
which the 1996 IB students were asked to prove.

7. Let (X, dX) and (Y, dY ) be metric spaces. Show that if (X, dX) is compact then any continuous
function f : X → Y is uniformly continuous.

8. [Tripos IB 95401(b)] For which a and b, with a ≤ 0 ≤ b, is the mapping T : C[a, b] → C[a, b]
defined by

T (f)(x) = 1 +
∫ x

0

2t f(t) dt

a contraction? Deduce that the differential equation

dy

dx
= 2xy , with y = 1 when x = 0 ,

has a unique solution in some interval containing 0. In what interval can the differential equation
be solved?

9. A mapping f(X, d) → (Y, d′) between metric spaces is called an isometric embedding if it preserves
distances exactly, i.e. d′(f(x), f(y)) = d(x, y) for all x, y ∈ X.

(i) Show that an isometric embedding is necessarily injective.
(ii) Suppose (X, d) is compact and let f : (X, d) → (X, d) be an isometric embedding. Show

that f is surjective. [Method: suppose x is not in the image of f , and derive a contradiction by
considering the distances between terms of the sequence (x, f(x), f(f(x)), . . .).]

(iii) Give an example to show that compactness cannot be weakened to completeness in (ii).
(iv) Let (X, d) be a bounded metric space, and let V be the vector space of bounded continuous

real-valued functions on X, equipped with the uniform norm (i.e. ‖f‖ = sup{|f(x)| : x ∈ X}). Show
that there is an isometric embedding X → V . [Thus, up to isometry, every bounded metric space is
a subspace of a normed space.]

*10. Let (X, d) be a metric space, and let HX denote the set of nonempty closed bounded subsets
of X. (HX is sometimes called the hyperspace of X.)
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(i) For x ∈ X and F ∈ HX, we define the distance from x to F to be

d(x, F ) = inf{d(x, y) : y ∈ F} .

Show that d(x, F ) = 0 if and only if x ∈ F , and that d(x, F ) ≤ d(x, y) + d(y, F ) for any x, y and F .
[Warning: the infimum in the definition of d need not be attained if x 6∈ F .]

(ii) Now we define the distance between two elements of HX by the formula

d(F,G) = sup({d(x, G) : x ∈ F} ∪ {d(y, F ) : y ∈ G}) .

Verify that d is a metric on HX.
(iii) Show that the function which sends x to {x} is an isometric embedding X → HX. Show

also that its image is a closed subset of HX.
(iv) Show that the function (F,G) 7→ F ∪ G is a continuous mapping HX × HX → HX. Is

(F,G) 7→ F ∩G continuous?
(v) Show that HX is complete if and only if X is complete. [One direction follows from (iii); for

the other, suppose given a Cauchy sequence (Fn) in HX, and consider the set of all limits in X of
sequences (xn) such that xn ∈ Fn for all n. It is helpful to begin by showing that this set coincides
with {x ∈ X : d(x, Fn) → 0 as n →∞}.]

(vi) Show that HX is compact if and only if X is compact. [Use the fact that compactness is
equivalent to ‘complete and totally bounded’: if X0 = {x1, x2, . . . , xn} is a finite set of points in
X such that the balls B(xi, ε) cover X, consider the 2n − 1 points of HX which are the nonempty
subsets of X0.]

(vii) Suppose X is compact, and that f : X → X is a contraction mapping. Show that the
function f defined by f(F ) = {f(x) : x ∈ F} maps HX into itself, and that it is a contraction
mapping. What is its unique fixed point?


