
ANALYSIS II EXAMPLES 2

G.P. Paternain Mich. 2003

The questions on this sheet are not all equally difficult and the harder ones are marked with ∗’s.
In all the questions on this sheet, the norm ‖ − ‖ on Rn may be taken to be whichever of the
three norms ‖ − ‖1, ‖ − ‖2 or ‖ − ‖∞ you find most convenient to work with. Comments on
and/or corrections to the questions on this sheet are always welcome, and may be e-mailed to me
at g.p.paternain@dpmms.cam.ac.uk.

1. Prove the following facts about convergence of sequences in an arbitrary normed space V :
(i) If (xn)→ x and (yn)→ y, then (xn + yn)→ x+ y.
(ii) If (xn)→ x and λ ∈ R, then (λxn)→ λx.
(iii) If xn = x for all n ≥ n0, then (xn)→ x.
(iv) If (xn)→ x, then any subsequence (xni) of (xn) also converges to x.

2. Which of the following subsets of R2 are (a) open, (b) closed?
(i) {(x, 0) : 0 ≤ x ≤ 1}.
(ii) {(x, 0) : 0 < x < 1}.
(iii) {(x, y) : y 6= 0}.
(iv) {(x, y) : x ∈ Q or y ∈ Q}.
(v) {(x, y) : xy = 1}.

∗3. Let E be a subset of Rn (or, if you prefer, of an arbitrary normed space). We define the closure
E of E to be the set of all points which can occur as limits of sequences of points of E, and the
interior E◦ of E to be the set

{x ∈ Rn : (∃ε > 0)(B(x, ε) ⊆ E)} .

(i) Show that E is closed, and that it is the smallest closed set containing E.
(ii) Show that E◦ is open, and that it is the largest open set contained in E.
(iii) Show that Rn \ E = R

n \ E◦.
(iv) By considering the inclusion relations which must hold amongst the sets

. . . , (E)◦, (E)◦, E,E,E◦, E◦, . . .

show that starting from a given E, it is not possible to produce more than seven distinct sets by
repeated application of the operators (−) and (−)◦.

(v) Find an example of a set in R1 which does give rise to seven distinct sets in this way.

4. Let E be a subset of Rn which is both open and closed. Show that E is either the whole of Rn or
the empty set. [Method: suppose for a contradiction that x ∈ E but y ∈ Rn \ E. Define a function
f : [0, 1] → R by setting f(t) = 1 if the point tx + (1 − t)y belongs to E, and f(t) = 0 otherwise;
now recall a suitable theorem from Analysis I.]

5. (i) Show that the mapping R2n → R
n which sends a 2n-dimensional vector

(x1, x2, . . . , xn, y1, y2, . . . , yn)

to
(x1 + y1, x2 + y2, . . . , xn + yn)

is continuous. Deduce that if f and g are continuous functions from (a subset of) Rp to Rn, so is
their (pointwise) sum f + g.
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(ii) By considering a suitable function Rn+1 → R
n, give a similar proof that if f is a continuous

R
n-valued function on a subset E of Rp, and λ is a continuous real-valued function on E, then the

pointwise scalar product λf (i.e. the function whose value at x is λ(x).f(x)) is continuous on E.

6. If A and B are subsets of Rn, we write A+B for the set {a+ b : a ∈ A, b ∈ B}. Show that if A
and B are both closed and one of them is bounded, then A + B is closed. Give an example in R1

to show that the boundedness condition cannot be omitted. If A and B are both open, is A + B
necessarily open? Justify your answer.

7. Let f : Rn → R
p, and let E,F be subsets of Rn and Rp respectively. Determine which of the

following statements are always true and which may be false, giving a proof or a counterexample as
appropriate. [N.B.: for the counterexamples, it suffices to take n = p = 1.]

(i) If f−1(F ) is closed whenever F is closed, then f is continuous.
(ii) If f is continuous, then f−1(F ) is closed whenever F is closed.
(iii) If f is continuous, then f(E) is open whenever E is open.
(iv) If f is continuous, then f(E) is bounded whenever E is bounded.
(v) If f(E) is bounded whenever E is bounded, then f is continuous.

8. In lectures we proved that if E is a closed and bounded set in Rn, then any continuous function
defined on E has bounded image. Prove the converse: if every continuous real-valued function on
E ⊆ Rn is bounded, then E is closed and bounded.

9. Let θ : Rn → R
p be a linear map. Show that

sup{‖θ(x)‖ : x ∈ Rn, ‖x‖ ≤ 1} = inf{k ∈ R : k is a Lipschitz constant for θ} .
Show also that the function which sends θ to the common value of these two expressions is a norm
on the vector space V = L(Rn,Rp) of all linear maps Rn → R

p. [We call this function the operator
norm on V .]

10. Let V be the vector space of all linear maps Rn → R
p, equipped with the operator norm defined

in the previous question.
(i) Show that if ‖θ‖ < ε then all the entries in the matrix representing θ (with respect to the

standard bases of Rn and Rp) have absolute value less than ε.
(ii) Conversely, if all entries of the matrix A have absolute value less than ε, show that the norm

of the linear map represented by A is less than npε. Deduce that convergence for sequences of linear
maps is equivalent to ‘entry-wise’ convergence of the representing matrices, and in particular that
V is complete.

(iii) If θ and φ are two composable linear maps, show that the norm of the composite θ ◦φ is less
than or equal to the product ‖θ‖.‖φ‖.

(iv) Now specialize to the case n = p. Show that if θ is an endomorphism of Rn satisfying ‖θ‖ < 1,
then the sequence whose mth term is ι+ θ + θ2 + · · ·+ θm−1 converges (here ι denotes the identity
mapping), and deduce that ι− θ is invertible.

(v) Deduce that if α is invertible then so is α− β whenever ‖β‖ < ‖α−1‖−1, and hence that the
set of invertible linear maps is open in V .

11. Let `0 be the space of all real sequences (an)∞n=1 such that all but finitely many of the an are
zero. If we use the natural definitions of addition and scalar mutliplication

(an) + (bn) = (an + bn), λ(an) = (λ an)

then `0 is a vector space. Find two norms in `0 which are not Lipschitz equivalent. Can you find
uncountably many which are not Lipschitz equivalent?


