ANALYSIS II EXAMPLES 2

G.P. Paternain Mich. 2003

The questions on this sheet are not all equally difficult and the harder ones are marked with *'s. In all the questions on this sheet, the norm $\|-\|$ on \mathbb{R}^n may be taken to be whichever of the three norms $\|-\|_1$, $\|-\|_2$ or $\|-\|_{\infty}$ you find most convenient to work with. Comments on and/or corrections to the questions on this sheet are always welcome, and may be e-mailed to me at g.p.paternain@dpmms.cam.ac.uk.

- 1. Prove the following facts about convergence of sequences in an arbitrary normed space V:
 - (i) If $(x_n) \to x$ and $(y_n) \to y$, then $(x_n + y_n) \to x + y$.
 - (ii) If $(x_n) \to x$ and $\lambda \in \mathbb{R}$, then $(\lambda x_n) \to \lambda x$.
 - (iii) If $x_n = x$ for all $n \ge n_0$, then $(x_n) \to x$.

(iv) If $(x_n) \to x$, then any subsequence (x_{n_i}) of (x_n) also converges to x.

2. Which of the following subsets of \mathbb{R}^2 are (a) open, (b) closed?

 $\begin{array}{l} (\mathrm{i}) \; \{(x,0): 0 \leq x \leq 1\}.\\ (\mathrm{ii}) \; \{(x,0): 0 < x < 1\}.\\ (\mathrm{iii}) \; \{(x,y): y \neq 0\}.\\ (\mathrm{iv}) \; \{(x,y): x \in \mathbb{Q} \text{ or } y \in \mathbb{Q}\}. \end{array}$

(v) $\{(x, y) : xy = 1\}.$

*3. Let E be a subset of \mathbb{R}^n (or, if you prefer, of an arbitrary normed space). We define the *closure* \overline{E} of E to be the set of all points which can occur as limits of sequences of points of E, and the *interior* E° of E to be the set

$$\{x \in \mathbb{R}^n : (\exists \epsilon > 0) (B(x, \epsilon) \subseteq E)\}.$$

- (i) Show that \overline{E} is closed, and that it is the smallest closed set containing E.
- (ii) Show that E° is open, and that it is the largest open set contained in E.
- (iii) Show that $\overline{\mathbb{R}^n \setminus E} = \mathbb{R}^n \setminus E^\circ$.
- (iv) By considering the inclusion relations which must hold amongst the sets

$$\ldots, \overline{(\overline{E})^{\circ}}, \overline{(E)}^{\circ}, \overline{E}, E, E^{\circ}, \overline{E^{\circ}}, \ldots$$

show that starting from a given E, it is not possible to produce more than seven distinct sets by repeated application of the operators (-) and $(-)^{\circ}$.

(v) Find an example of a set in \mathbb{R}^1 which does give rise to seven distinct sets in this way.

4. Let *E* be a subset of \mathbb{R}^n which is both open and closed. Show that *E* is either the whole of \mathbb{R}^n or the empty set. [Method: suppose for a contradiction that $x \in E$ but $y \in \mathbb{R}^n \setminus E$. Define a function $f: [0,1] \to \mathbb{R}$ by setting f(t) = 1 if the point tx + (1-t)y belongs to *E*, and f(t) = 0 otherwise; now recall a suitable theorem from Analysis I.]

5. (i) Show that the mapping $\mathbb{R}^{2n} \to \mathbb{R}^n$ which sends a 2*n*-dimensional vector

$$(x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n)$$

 to

$$(x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$$

is continuous. Deduce that if f and g are continuous functions from (a subset of) \mathbb{R}^p to \mathbb{R}^n , so is their (pointwise) sum f + g.

(ii) By considering a suitable function $\mathbb{R}^{n+1} \to \mathbb{R}^n$, give a similar proof that if f is a continuous \mathbb{R}^n -valued function on a subset E of \mathbb{R}^p , and λ is a continuous real-valued function on E, then the pointwise scalar product λf (i.e. the function whose value at x is $\lambda(x).f(x)$) is continuous on E.

6. If A and B are subsets of \mathbb{R}^n , we write A + B for the set $\{a + b : a \in A, b \in B\}$. Show that if A and B are both closed and one of them is bounded, then A + B is closed. Give an example in \mathbb{R}^1 to show that the boundedness condition cannot be omitted. If A and B are both open, is A + B necessarily open? Justify your answer.

7. Let $f : \mathbb{R}^n \to \mathbb{R}^p$, and let E, F be subsets of \mathbb{R}^n and \mathbb{R}^p respectively. Determine which of the following statements are always true and which may be false, giving a proof or a counterexample as appropriate. [N.B.: for the counterexamples, it suffices to take n = p = 1.]

(i) If $f^{-1}(F)$ is closed whenever F is closed, then f is continuous.

(ii) If f is continuous, then $f^{-1}(F)$ is closed whenever F is closed.

(iii) If f is continuous, then f(E) is open whenever E is open.

(iv) If f is continuous, then f(E) is bounded whenever E is bounded.

(v) If f(E) is bounded whenever E is bounded, then f is continuous.

8. In lectures we proved that if E is a closed and bounded set in \mathbb{R}^n , then any continuous function defined on E has bounded image. Prove the converse: if every continuous real-valued function on $E \subseteq \mathbb{R}^n$ is bounded, then E is closed and bounded.

9. Let $\theta \colon \mathbb{R}^n \to \mathbb{R}^p$ be a linear map. Show that

 $\sup\{\|\theta(x)\| : x \in \mathbb{R}^n, \|x\| \le 1\} = \inf\{k \in \mathbb{R} : k \text{ is a Lipschitz constant for } \theta\}.$

Show also that the function which sends θ to the common value of these two expressions is a norm on the vector space $V = \mathcal{L}(\mathbb{R}^n, \mathbb{R}^p)$ of all linear maps $\mathbb{R}^n \to \mathbb{R}^p$. [We call this function the *operator* norm on V.]

10. Let V be the vector space of all linear maps $\mathbb{R}^n \to \mathbb{R}^p$, equipped with the operator norm defined in the previous question.

(i) Show that if $\|\theta\| < \epsilon$ then all the entries in the matrix representing θ (with respect to the standard bases of \mathbb{R}^n and \mathbb{R}^p) have absolute value less than ϵ .

(ii) Conversely, if all entries of the matrix A have absolute value less than ϵ , show that the norm of the linear map represented by A is less than $np\epsilon$. Deduce that convergence for sequences of linear maps is equivalent to 'entry-wise' convergence of the representing matrices, and in particular that V is complete.

(iii) If θ and ϕ are two composable linear maps, show that the norm of the composite $\theta \circ \phi$ is less than or equal to the product $\|\theta\| \cdot \|\phi\|$.

(iv) Now specialize to the case n = p. Show that if θ is an endomorphism of \mathbb{R}^n satisfying $\|\theta\| < 1$, then the sequence whose *m*th term is $\iota + \theta + \theta^2 + \cdots + \theta^{m-1}$ converges (here ι denotes the identity mapping), and deduce that $\iota - \theta$ is invertible.

(v) Deduce that if α is invertible then so is $\alpha - \beta$ whenever $\|\beta\| < \|\alpha^{-1}\|^{-1}$, and hence that the set of invertible linear maps is open in V.

11. Let ℓ_0 be the space of all real sequences $(a_n)_{n=1}^{\infty}$ such that all but finitely many of the a_n are zero. If we use the natural definitions of addition and scalar multiplication

$$(a_n) + (b_n) = (a_n + b_n), \quad \lambda(a_n) = (\lambda a_n)$$

then ℓ_0 is a vector space. Find two norms in ℓ_0 which are not Lipschitz equivalent. Can you find uncountably many which are not Lipschitz equivalent?