ANALYSIS II EXAMPLES 2

G.P. Paternain Mich. 2002

The questions on this sheet are not all equally difficult and the harder ones are marked with «’s.
In all the questions on this sheet, the norm || — || on R™ may be taken to be whichever of the
three norms || — ||1, || — |l2 or || — ||ec you find most convenient to work with. Comments on
and/or corrections to the questions on this sheet are always welcome, and may be e-mailed to me
at g.p.paternain@dpmms.cam.ac.uk.

1. Prove the following facts about convergence of sequences in an arbitrary normed space V:
(ii) If () — x and (y,) — v, then (x, + yn) — = + .
(iii) If (x,,) — = and A € R, then (A\z,,) — Az.
(iv) If &, = « for all n > ng, then (z,) — z.
(v) If (x,,) — x, then any subsequence (x,,) of (z,,) also converges to .

2. Which of the following subsets of R? are (a) open, (b) closed?
(1) {(z,0): 0 <z <1}.
(ii) {(2,0): 0 <z < 1}.
(iii) {(z,y) : y # 0}.
(iv) {(z,y) :z € Qor y € Q}.
(v) {(z,y) - 2y =1}
*3. Let E be a subset of R™ (or, if you prefer, of an arbitrary normed space). We define the closure

FE of E to be the set of all points which can occur as limits of sequences of points of E, and the
interior E° of E to be the set

{z € R": (e > 0)(B(z,e) CE)} .

(i) Show that E is closed, and that it is the smallest closed set containing E.
(ii) Show that E° is open, and that it is the largest open set contained in E.
(iii) Show that R*» \ F =R" \ E°.

(iv) By considering the inclusion relations which must hold amongst the sets

...(E»,(E)°.E,E. E°, 5, ...

show that starting from a given FE, it is not possible to produce more than seven distinct sets by
repeated application of the operators (—) and (—)°.
(v) Find an example of a set in R which does give rise to seven distinct sets in this way.

4. Let FE be a subset of R"™ which is both open and closed. Show that FE is either the whole of R™ or
the empty set. [Method: suppose for a contradiction that z € FE but y € R™ \ E. Define a function
f:]0,1] — R by setting f(¢) = 1 if the point tx + (1 — t)y belongs to E, and f(t) = 0 otherwise;
now recall a suitable theorem from Analysis 1.]

5. (i) Show that the mapping R*® — R” which sends a 2n-dimensional vector

(X1, o Ty Y1, Y2y« -+ s Yn)
to
(1 +yn 22+ y2, ., 0+ Yn)
is continuous. Deduce that if f and g are continuous functions from (a subset of) R? to R™, so is
their (pointwise) sum f + g.
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(ii) By considering a suitable function R"*! — R", give a similar proof that if f is a continuous
R"-valued function on a subset E of RP, and A is a continuous real-valued function on F, then the
pointwise scalar product Af (i.e. the function whose value at z is A(x).f(z)) is continuous on E.

6. If A and B are subsets of R", we write A+ B for the set {a +b:a € A,b € B}. Show that if A
and B are both closed and one of them is bounded, then A 4+ B is closed. Give an example in R!
to show that the boundedness condition cannot be omitted. If A and B are both open, is A+ B
necessarily open? Justify your answer.

7. Let f: R® — RP, and let E, F be subsets of R™ and R? respectively. Determine which of the
following statements are always true and which may be false, giving a proof or a counterexample as
appropriate. [N.B.: for the counterexamples, it suffices to take n = p = 1]

(i) If f=1(F) is closed whenever F is closed, then f is continuous.

(ii) If f is continuous, then f~1(F) is closed whenever F is closed.

(iii) If f is continuous, then f(E) is open whenever E is open.

(iv) If f is continuous, then f(F) is bounded whenever E is bounded.

(v) If f(E) is bounded whenever E is bounded, then f is continuous.
8. In lectures we proved that if F is a closed and bounded set in R™, then any continuous function
defined on E has bounded image. Prove the converse: if every continuous real-valued function on
E C R” is bounded, then F is closed and bounded.

9. Let 0: R™ — RP be a linear map. Show that
sup{||6(z)]| : x € R",||z|| < 1} = inf{k € R: k is a Lipschitz constant for 6} .

Show also that the function which sends 6 to the common value of these two expressions is a norm
on the vector space V = L(R™,RP) of all linear maps R™ — RP. [We call this function the operator
norm on V]

10. Let V be the vector space of all linear maps R™ — RP, equipped with the operator norm defined
in the previous question.

(i) Show that if ||f|| < e then all the entries in the matrix representing 6 (with respect to the
standard bases of R™ and RP) have absolute value less than e.

(ii) Conversely, if all entries of the matrix A have absolute value less than e, show that the norm
of the linear map represented by A is less than npe. Deduce that convergence for sequences of linear
maps is equivalent to ‘entry-wise’ convergence of the representing matrices, and in particular that
V' is complete.

(iii) If  and ¢ are two composable linear maps, show that the norm of the composite 6 o ¢ is less
than or equal to the product ||8]].]|¢]|.

(iv) Now specialize to the case n = p. Show that if € is an endomorphism of R™ satisfying ||6]| < 1,
then the sequence whose mth term is ¢ + 6 + 2 4 - - - + 6™~ converges (here ¢ denotes the identity
mapping), and deduce that ¢ — € is invertible.

(v) Deduce that if « is invertible then so is a — 3 whenever ||| < [|@~!|| 7!, and hence that the
set of invertible linear maps is open in V.

11. Let ¢y be the space of all real sequences (a,,)2; such that all but finitely many of the a,, are
zero. If we use the natural definitions of addition and scalar mutliplication

(an) + (bn) = (an +bn),  Aan) = (Nay)

then /¢y is a vector space. Find two norms in ¢y which are not Lipschitz equivalent. Can you find
uncountably many which are not Lipschitz equivalent?



