ANALYSIS II—EXAMPLES 4 Mich. 2018

Please email comments, corrections to: n.wickramasekera@dpmms.cam.ac.uk.

1. Quickies: (a) Let $F : [0,1] \times \mathbb{R}^m \to \mathbb{R}$ be continuous and $a = (a_0, \ldots, a_{m-1}) \in \mathbb{R}^m$. Suppose that F is uniformly Lipschitz in the \mathbb{R}^m variables near a, i.e. for some constant K and an open subset U of \mathbb{R}^m containing a, $|F(t,x) - F(t,y)| \leq K ||x-y||$ for all $t \in [0,1]$, $x, y \in U$. Use the Picard-Lindelöf existence theorem for first order ODE systems to show that there is an $\epsilon > 0$ such that, writing $f^{(j)}$ for the *j*th derivative of f, the *m*th order initial value problem

$$f^{(m)}(t) = F(t, f(t), f^{(1)}(t), \dots, f^{(m-1)}(t)) \quad \text{for} \quad t \in [0, \epsilon);$$
$$f^{(j)}(0) = a_j \quad \text{for} \quad 0 \le j \le m - 1$$

has a unique C^m solution $f : [0, \epsilon) \to \mathbb{R}$ (see also Q2 below).

(b) Let $f: \mathbb{R}^2 \to \mathbb{R}$ and $a \in \mathbb{R}^n$. If the directional derivatives $D_u f(a)$ exist for all directions $u \in \mathbb{R}^2$ and if $D_u f(a)$ depends linearly on u, does it follow that f is differentiable at a? (c) Let $f: \mathbb{R}^2 \to \mathbb{R}$. If f is differentiable at $0 \in \mathbb{R}^2$, and if the partial derivatives of f exist in a neighbourhood of 0, does it follow that one partial derivative is continuous at 0? (d) Let $f: [a, b] \to \mathbb{R}^2$ be continuous, and differentiable on (a, b). Does it follow that there exists $c \in (a, b)$ such that f(b) - f(a) = f'(c)(b - a)?

2. Let $F : [a,b] \times \mathbb{R}^n \to \mathbb{R}^n$ be continuous, $x_0 \in \mathbb{R}^n$ and R > 0. Suppose that $\sup_{[a,b] \times \overline{B_R(x_0)}} ||F|| \leq R(b-a)^{-1}$ and that $||F(t,x) - F(t,y)|| \leq K||x-y||$ for some K and all $t \in [a,b], x, y \in \overline{B_R(x_0)}$. We showed in lecture that for each $t_0 \in [a,b]$, there is a unique $f \in C([a,b]; \overline{B_R(x_0)})$ solving the integral equation $f(t) = x_0 + \int_{t_0}^t F(s, f(s)) ds$, $t \in [a,b]$. Show that this f is in fact the unique function in $C([a,b]; \mathbb{R}^n)$ solving the integral equation. (Hint: for $g \in C([a,b]; \mathbb{R}^n)$ solving $g(t) = x_0 + \int_{t_0}^t F(s,g(s)) ds$, $t \in [a,b]$, let $\Lambda^+ = \{t \in [t_0,b] : ||g(\sigma) - x_0|| \leq R \quad \forall \sigma \in [t_0,t]\}$ and consider the possibility that $\sup \Lambda^+ < b$.)

3. Let $U \subset \mathbb{R}^n$ be open, $f : U \to \mathbb{R}$ and $a \in U$. A differentiable curve passing through a is a differentiable map $\gamma : (-1,1) \to \mathbb{R}^n$ with $\gamma(0) = a$. If $f \circ \gamma$ is differentiable at 0 for every differentiable curve γ passing through a, does it follow that f is differentiable at a? 4. Define $f: \mathbb{R}^3 \to \mathbb{R}^2$ by $f(x, y, z) = (e^{x+y+z}, \cos x^2 y)$. Without making use of partial derivatives, show that f is everywhere differentiable and find Df(a) at each $a \in \mathbb{R}^3$. Find all partial derivatives of f and hence, using appropriate results on partial derivatives, give an alternative proof of this result.

5. Consider the map $f: \mathbb{R}^3 \to \mathbb{R}^3$ given by f(x) = x/||x|| for $x \neq 0$, and f(0) = 0. Show that f is differentiable except at 0, and that

$$Df(x)(h) = \frac{h}{\|x\|} - \frac{x(x \cdot h)}{\|x\|^3}.$$

Verify that Df(x)(h) is orthogonal to x and explain geometrically why this is the case.

6. At which points of \mathbb{R}^2 is the function f(x,y) = |x||y| differentiable? What about the function $g: \mathbb{R}^2 \to \mathbb{R}$ defined by $g(x,y) = xy/\sqrt{x^2 + y^2}$ if $(x,y) \neq (0,0), g(0,0) = 0$?

7. Let f be a real-valued function on an open subset U of \mathbb{R}^2 such that that $f(\cdot, y)$ is continuous for each fixed $y \in U$ and $f(x, \cdot)$ is continuous for each fixed $x \in U$. Give an example to show that f need not be continuous on U. If additionally $f(\cdot, y)$ is Lipschitz for each $y \in U$ with Lipschitz constant independent of y, show that f is continuous on U. Deduce that if $D_1 f$ exists and is bounded on U and $f(x, \cdot)$ is continuous for each fixed $x \in U$, then f is continuous on U.

8. Let $f: \mathbb{R}^2 \to \mathbb{R}$ and $a \in \mathbb{R}^2$. If $D_1 f$ exists in some open ball around a and is continuous at a, and if $D_2 f$ exists at a, show that f is differentiable at a.

9. (Some useful properties of the operator norm). Recall that the operator norm on the vector space $\mathcal{L}(\mathbb{R}^n; \mathbb{R}^m)$ of linear maps from \mathbb{R}^n to \mathbb{R}^m is defined by $||A||_{op} = \sup_{x \in S} ||A(x)||$ where $S = \{x \in \mathbb{R}^n : ||x|| = 1\}$. Prove the following: (i) if $A \in \mathcal{L}(\mathbb{R}^n; \mathbb{R}^m)$ then $||A||_{op} = \sup_{x \in \mathbb{R}^n \setminus \{0\}} \frac{||A(x)||}{||x||}$; (ii) if $A \in \mathcal{L}(\mathbb{R}^n; \mathbb{R}^m)$ and $B \in \mathcal{L}(\mathbb{R}^m; \mathbb{R}^p)$ then $B \circ A \in \mathcal{L}(\mathbb{R}^n; \mathbb{R}^p)$ and $||B \circ A||_{op} \leq ||B||_{op} ||A||_{op}$; (iii) if $A \in \mathcal{L}(\mathbb{R}^n; \mathbb{R})$ then there is $a \in \mathbb{R}^n$ such that $Ax = \langle a, x \rangle$ for all $x \in \mathbb{R}^n$ and in this case $||A||_{op} = ||a||$; (iv) if $A \in \mathcal{L}(\mathbb{R}; \mathbb{R}^m)$ then there is $a \in \mathbb{R}^m$ such that Ax = xa for all $x \in \mathbb{R}$ and in this case $||A||_{op} = ||a||$; (v) if $A \in \mathcal{L}(\mathbb{R}^n; \mathbb{R}^m)$ and (A_{ij}) is the matrix of A relative to the standard bases of \mathbb{R}^n and \mathbb{R}^m , then $\frac{1}{\sqrt{n}} \left(\sum_{j=1}^n \sum_{i=1}^m A_{ij}^2\right)^{1/2} \leq ||A||_{op} \leq \left(\sum_{j=1}^n \sum_{i=1}^m A_{ij}^2\right)^{1/2}$, with equality in the right hand side inequality if and only if either A = 0 or rank (A) = 1.

10. Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a C^1 map. Suppose that $\|Df(x) - I\| \leq \mu$ for some $\mu \in (0, 1)$ and all $x \in \mathbb{R}^n$, where I is the identity map on \mathbb{R}^n and $\|\cdot\|$ is the operator norm. Show that f is an open mapping, i.e. that f maps open subsets to open subsets. Show that $\|x - y\| \leq (1 - \mu)^{-1} \|f(x) - f(y)\|$ for all $x, y \in \mathbb{R}^n$, and deduce that f is one-to-one and that $f(\mathbb{R}^n)$ is closed in \mathbb{R}^n . Conclude that f is a diffeomorphism of \mathbb{R}^n , i.e. that f is a bijection with C^1 inverse. What can you say about a C^1 map $f: \mathbb{R}^n \to \mathbb{R}^n$ assumed to satisfy only that $\|Df(x) - I\| < 1$ for all $x \in \mathbb{R}^n$?

11. Let \mathcal{M}_n be the space of $n \times n$ real matrices equipped with a norm. Show that the determinant function det: $\mathcal{M}_n \to \mathbb{R}$ is differentiable at the identity matrix I with $D \det(I)(H) = \operatorname{tr}(H)$. Deduce that det is differentiable at any invertible matrix A with $D \det(A)(H) = \det A \operatorname{tr}(A^{-1}H)$. Show further that det is twice differentiable at I and find $D^2 \det(I)$ as a bilinear map.

12. Define $f: \mathcal{M}_n \to \mathcal{M}_n$ by $f(A) = A^2$. Show that f is continuously differentiable on the whole of \mathcal{M}_n . Deduce that there is a continuous square-root function on some neighbourhood of I; that is, show that there is an open ball $B_{\varepsilon}(I)$ for some $\varepsilon > 0$ and a continuous function $g: B_{\varepsilon}(I) \to \mathcal{M}_n$ such that $g(A)^2 = A$ for all $A \in B_{\varepsilon}(I)$. Is it possible to define a continuous square-root function on the whole of \mathcal{M}_n ?

13. Let $C = \{(x, y) \in \mathbb{R}^2 : x^3 + y^3 - 3xy = 0\}$. Define $F: \mathbb{R}^2 \to \mathbb{R}^2$ by $F(x, y) = (x, x^3 + y^3 - 3xy)$. Show that F is locally C^1 -invertible around each point of $C \setminus \{(0, 0), (2^{\frac{2}{3}}, 2^{\frac{1}{3}})\}$; that is, show that if $(x_0, y_0) \in C \setminus \{(0, 0), (2^{\frac{2}{3}}, 2^{\frac{1}{3}})\}$ then there are open sets U containing (x_0, y_0) and V containing $F(x_0, y_0) = (x_0, 0)$ such that F maps U bijectively to V with inverse a C^1 function. What is the derivative of the inverse function? Deduce that for each point $(x_0, y_0) \in C \setminus \{(0, 0), (2^{\frac{2}{3}}, 2^{\frac{1}{3}})\}$, there exists an open subset $I \subset \mathbb{R}$ containing x_0 and a C^1 function $g: I \to \mathbb{R}$ such that $C \cap U = \operatorname{graph} g \equiv \{(x, g(x)) : x \in I\}$.

14^{*}. (i) Let f be a real-valued C^2 function on an open subset U of \mathbb{R}^2 . If f has a local maximum at a point $a \in U$ (meaning that there is $\rho > 0$ such that $B_{\rho}(a) \subset U$ and $f(x) \leq f(a)$ for every $x \in B_{\rho}(a)$), show that Df(a) = 0 and that the matrix $H = (D_{ij}f(a))$ is negative semi-definite (i.e. has non-positive eigenvalues).

(ii) Let U be a bounded open subset of \mathbb{R}^2 and let $f: \overline{U} \to \mathbb{R}$ be continuous on \overline{U} (the closure of U) and C^2 in U. If f satisfies the partial differential inequality $\Delta f + aD_1f + bD_2f + cf \ge 0$ in U where Δ is the Laplace's operator defined by $\Delta f = D_{11}f + D_{22}f$, and a, b, c are realvalued functions on U with c < 0 on U, and if f is positive somewhere in \overline{U} , show that

$$\sup_{\overline{U}} f = \sup_{\partial U} f$$

where $\partial U = \overline{U} \setminus U$ is the boundary of U. Deduce that if a, b, c are as above, $\varphi : \partial U \to \mathbb{R}$ is a given continuous function, then for any $g : \mathbb{R}^2 \to \mathbb{R}$ there is at most one continuous function f on \overline{U} that is C^2 in U and solves the boundary value problem $\Delta f + aD_1f + bD_2f + cf = g$ in $U, f = \varphi$ on ∂U .