
ANALYSIS II—EXAMPLES 3 Mich. 2018

Please email comments, corrections to: n.wickramasekera@dpmms.cam.ac.uk.

1. Quickies: (a) Use the equivalence of norms on a finite dimensional vector space to show that for each n,
there is a constant C such that the following holds: for every polynomial p of degree ≤ n there is x0 ∈ [0, 1/n]
such that |p(x)| ≤ C|p(x0)| for every x ∈ [0, 1].

(b) If (X, d) is a metric space and A is a non-empty subset of X, show that the distance from x ∈ X to A
defined by ρ(x) = infy∈A d(x, y) is a Lipschitz function on X with Lipschitz constant ≤ 1.

(c) If (xn), (yn) are Cauchy sequences in a metric space (X, d), show that (d(xn, yn)) is convergent (in R).

2. (a) Is the set (1, 2] an open subset of the metric space R with the metric d(x, y) = |x − y|? Is it closed?
What if we replace the metric space R with the space [0, 2], the space(1, 3) or the space (1, 2], in each case
with the metric d?

(b) Let X be a set equipped with the discrete metric, and Y any metric space. Describe all open subsets
of X, closed subsets of X, compact subsets of X, Cauchy sequences in X, continuous functions f : X → Y
and continuous functions f : Y → X.

3. For each of the following sets X, determine whether the given function d defines a metric on X. In each
case where the function does define a metric, describe the open ball Bε(x) for x ∈ X and ε > 0 small.
(i) X = Rn; d(x, y) = min{|x1 − y1|, |x2 − y2|, . . . , |xn − yn|}.

(ii) X = Z; d(x, x) = 0, and, for x 6= y, d(x, y) = 2n where x− y = 2na with n a non-negative integer and
a an odd integer.

(iii) X is the set of functions from N to N; d(f, f) = 0, and, for f 6= g, d(f, g) = 2−n for the least n such
that f(n) 6= g(n).

(iv) X = C; d(z, w) = |z−w| if z and w lie on the same line through the origin, d(z, w) = |z|+ |w| otherwise.

4. Let (X, d) be a metric space.

(a) Show that the union of any collection of open subsets of X must be open (regardless of whether the
collection is finite, countable or uncountable), and that the intersection of any finite collection of open subsets
is again open. Formulate and prove similar properties about the closed subsets of X.

(b) Let E be a subset of X. Show that there is a unique largest open subset Eo of X contained in E, i.e.
a unique open subset Eo of X such that that Eo ⊆ E and if G is any open subset of X with G ⊆ E then
G ⊆ Eo. The set Eo is called the interior of E in X. Show also that there is a unique smallest closed subset
E of X containing E, i.e. a unique closed subset E of X with E ⊆ E and if F is any closed subset of X with
E ⊆ F then E ⊆ F . The set E is called the closure of E in X.

(c) Show that
Eo = {x ∈ X : Bε(x) ⊂ E for some ε > 0}

and that
E = {x ∈ X : xn → x for some sequence (xn) in E}.

5. Let V be a normed space, x ∈ V and r > 0. Prove that the closure of the open ball Br(x) is the closed
ball Dr(x) = {y ∈ V : ‖x − y‖ ≤ r}. Give an example to show that, in a general metric space (X, d), the
closure of the open ball Br(x) need not be the closed ball Dr(x) = {y ∈ X : d(x, y) ≤ r}.

6. In lectures we proved that if E is a compact subset of Rn with the Euclidean metric, then any continuous
function on E has bounded image. Prove the converse: if E is a subset of Rn with the Euclidean metric and
if every continuous function f : E → R has bounded image, then E is compact.

7. Each of the following properties/notions makes sense for an arbitrary metric spaces X. Which are
topological (i.e. dependent only on the collection of open subsets of X and not on the metric generating the
open subsets)? Justify your answers.



(i) boundedness of a subset of X.

(ii) closed-ness of a subset of X.

(iii) notion that a subset of X is closed and bounded.

(iv) total boundedness of X; that is, the property that for every ε > 0, there is a finite set F ⊂ X such that
the union of open balls with centres in F and radius ε is X.

(v) completeness of X.

(vi) notion that X is complete and totally bounded.

8. Use the Contraction Mapping Theorem to show that the equation cosx = x has a unique real solution.
Find this solution to some reasonable accuracy using a calculator (remember to work in radians!), and justify
the claimed accuracy of your approximation.

9. Let I = [0, R] be an interval and let C(I) be the space of continuous functions on I. Show that, for any
α ∈ R, we may define a norm by ‖f‖α = supx∈I |f(x)e−αx|, and that the norm ‖ · ‖α is Lipschitz equivalent
to the uniform norm ‖f‖ = supx∈I |f(x)|.
Now suppose that φ:R2 → R is continuous, and Lipschitz in the second variable. Consider the map T from
C(I) to itself sending f to y0 +

∫ x
0
φ(t, f(t))dt. Give an example to show that T need not be a contraction

under the uniform norm. Show, however, that T is a contraction under the norm ‖·‖α for some α, and hence
deduce that the differential equation f ′(x) = φ(x, f(x)) has a unique solution on I satisfying f(0) = y0.

10. Let (X, d) be a non-empty complete metric space. Suppose f :X → X is a contraction and g:X → X is
a function which commutes with f , i.e. such that f(g(x)) = g(f(x)) for all x ∈ X. Show that g has a fixed
point. Must this fixed point be unique?

11. Give an example of a non-empty complete metric space (X, d) and a function f :X → X satisfying
d(f(x), f(y)) < d(x, y) for all x, y ∈ X with x 6= y, but such that f has no fixed point. Suppose now that X
is a non-empty compact subset of Rn with the Euclidean metric. Show that in this case f must have a fixed
point. If g:X → X satisfies d(g(x), g(y)) ≤ d(x, y) for all x, y ∈ X, must g have a fixed point?

12. (a) Let B = B1(0) be the closed unit ball in Rn and let F : [0, 1] × B → Rn be continuous. Suppose
that there is a constant K such that ‖F (t, x) − F (t, y)‖ ≤ K‖x − y‖ for all t ∈ [0, 1] and all x, y ∈ B. Let
x1, x2 ∈ Rn. By the Picard–Lindelöf theorem, we know that there is ε ∈ (0, 1] and differentiable functions

f1, f2 : [0, ε]→ B such that
dfj
dt = F (t, fj(t)), fj(0) = xj for j = 1, 2. Show that ‖f1(t)−f2(t)‖ ≤ ‖x1−x2‖eKt

for all t ∈ [0, ε]. (Notice that this in particular gives uniqueness of f satisfying df
dt = F (t, f(t)), f(0) = x0 in

some interval [0, ε], although such uniqueness is also automatically guaranteed by the Contraction Mapping
Theorem we used to prove the existence of solutions).

(b) Now relax the above Lipschitz condition on F in the second variable to Hölder continuity, i.e. assume
that there exist constants K and α ∈ (0, 1) such that ‖F (t, x)−F (t, y)‖ ≤ K‖x−y‖α for all t ∈ [0, 1] and all

x, y ∈ B. If f1, f2 [0, ε] → Rn are as above, show that ‖f1(t)− f2(t)‖ ≤
(
‖x1 − x2‖1−α + (1− α)Kt

) 1
1−α for

all t ∈ [0, ε]. What does this say about the set of solutions f to df
dt = F (t, f(t)), f(0) = x0 in some interval

[0, ε]?

13.? Let (X, d) be a non-empty complete metric space and let f :X → X be a function such that for each
positive integer n we have
(i) if d(x, y) < n+ 1 then d(f(x), f(y)) < n; and

(ii) if d(x, y) < 1/n then d(f(x), f(y)) < 1/(n+ 1).
Must f have a fixed point?

14.? Let K be a compact subset of R and let p ∈ K. Construct a metric d on K1 = K \{p} such that (K1, d)
is complete and the topology generated by d on K1 is the same as the topology generated by the Euclidean
metric on K1.

15.? (a) Let (X, d) be a totally bounded metric space. Show that any sequence (xk) in X has a Cauchy
subsequence. (b) Show that a metric space is compact if and only if it is complete and totally bounded.


