Analysis II

EXAMPLE SHEET 2

- 1. Let V be a normed space.
 - (a) If $(\mathbf{v}_n) \to \mathbf{v} \in V$, show that any subsequence of (\mathbf{v}_n) converges to \mathbf{v} .
 - (b) If (\mathbf{v}_n) is a Cauchy sequence in V, show that it is bounded.
- 2. Suppose $(f_n) \to f$ pointwise, where $f_n, f \in C[0, 1]$.
 - (a) If $(f_n) \to f$ uniformly and (x_m) is a sequence of points in [0, 1] converging to x, show that $(f_n(x_n)) \to f(x)$.
 - (b) If (f_n) does not converge uniformly, show that there is a convergent sequence $(x_m) \rightarrow x \in [0, 1]$ such that $(f_n(x_n))$ does not converge to f(x). (Hint: Bolzano-Weierstrass.)
- 3. If A and B are subsets of \mathbb{R}^n , let $A + B = \{a + b \mid a \in A, b \in B\}$. Show that if A and B are both closed and one of them is bounded, then A + B is closed. Give an example in \mathbb{R} to show that the boundedness condition cannot be omitted. If A and B are both open, is A + B necessarily open? Justify your answer.
- 4. Let $(V, \|\cdot\|)$ be a complete normed space, and let W be a linear subspace of V. Show that $(W, \|\cdot\|)$ is complete if and only W is a closed subset of V. Which of the following vector spaces of functions on \mathbb{R} are complete with respect to the uniform norm?
 - (a) The space $C_b(\mathbb{R})$ of bounded continuous functions on \mathbb{R} .
 - (b) The space $C_0(\mathbb{R})$ of continuous functions $f: \mathbb{R} \to \mathbb{R}$ such that $f(x) \to 0$ as $|x| \to \infty$.
 - (c) The space $C_c(\mathbb{R})$ of continuous functions $f : \mathbb{R} \to \mathbb{R}$ such that f(x) = 0 for |x| sufficiently large.
- 5. Let $(V, \|\cdot\|)$ be a normed space, and let (\mathbf{v}_n) be a sequence in V.
 - (a) If V is complete, show that $\sum_{n=1}^{\infty} \mathbf{v}_n$ converges whenever $\sum_{n=1}^{\infty} ||\mathbf{v}_n||$ converges.
 - (b)* If $\sum_{n=1}^{\infty} \mathbf{v}_n$ converges whenever $\sum_{n=1}^{\infty} ||\mathbf{v}_n||$ converges, show that V is complete. (Hint: If (\mathbf{v}_n) is Cauchy, there is a subsequence (\mathbf{v}_{n_i}) such that $\sum_{i=1}^{\infty} ||\mathbf{v}_{n_{i+1}} - \mathbf{v}_{n_i}||$ converges.)
- 6. Which of the following functions $f:[0,\infty) \to \mathbb{R}$ are uniformly continuous?

(a)
$$f(x) = \sin x^2$$
 (b) $f(x) = \inf\{|x - n^2| \mid n \in \mathbb{Z}\}$ (c) $(\sin x^3)/(x+1)$

- 7. Let $f : \mathbb{R} \to \mathbb{R}$ be differentiable, and suppose that f' is bounded. Show that f is uniformly continuous. Let $g : [-1,1] \to \mathbb{R}$ be given by $g(x) = x^2 \sin(1/x^2)$ for $x \neq 0$ and g(0) = 0. Show that g is differentiable, but that its derivative is unbounded. Is g uniformly continuous?
- 8. Suppose that $f:[0,\infty) \to \mathbb{R}$ is continuous, and that f(x) tends to a finite limit as $x \to \infty$. Must f be uniformly continuous on $[0,\infty)$? Give a proof or a counterexample.

- 9. Let ℓ^1 be the set of real sequences (x_n) such that $\sum_{n=1}^{\infty} |x_n|$ is convergent. Show that with addition and scalar multiplication defined termwise, ℓ^1 is a vector space. Define $\|\cdot\|_1 : \ell^1 \to \mathbb{R}$ by $\|(x_n)\|_1 = \sum_{n=1}^{\infty} |x_n|$. Show that $\|\cdot\|_1$ is a norm on ℓ^1 , and that $(\ell^1, \|\cdot\|_1)$ is complete. Is $\overline{B}_1(0, \|\cdot\|_1)$ sequentially compact?
- 10. Let ℓ^{∞} be the vector space of bounded real sequences $\mathbf{x} = (x_n)$, with the norm given by $\|(x_n)\| = \sup |x_n|$. Let (\mathbf{x}_k) be a bounded sequence in ℓ^{∞} , and let $x_{i,k} \in \mathbb{R}$ be the *i*th entry in the sequence \mathbf{x}_k . Show that (\mathbf{x}_k) has a subsequence (\mathbf{x}_{k_j}) such that for each fixed value of *i*, the sequence (x_{i,k_j}) converges as $j \to \infty$. (Hint: use a diagonal argument.) Must \mathbf{x}_{k_j} converge in ℓ^{∞} ? How is this example related to the notions of pointwise and uniform convergence?
- 11. Show that $A = \{(x_n) \in \ell^1 \mid |x_n| \le 1/n^2 \text{ for all } n\}$ is a sequentially compact subset of $(\ell^1, \|\cdot\|_1)$, but that $B = \{(x_n) \in \ell^1 \mid |x_n| \le 1/n \text{ for all } n\}$ is not.
- 12. Let V be a complete normed space, and let $\mathcal{B}(V, V)$ be the space of continuous linear maps from V to itself. Show that $\mathcal{B}(V, V)$ is complete with respect to the operator norm defined in problem 6 of the first example sheet. Show that if $\phi \in \mathcal{B}(V, V)$ satisfies $\|\phi\| < 1$, then $I - \phi$ is invertible, where I is the identity map. (Hint: consider $I + \phi + \phi^2 + ...$) Deduce that the set of invertible maps is an open subset of $\mathcal{B}(V, V)$.
- 13.* (A space-filling curve) Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function with the following properties: f(t) = 0 for $t \in [0, 1/3]$; f(t) = 1 for $t \in [2/3, 1]$; $0 \le f(t) \le 1$ for all $t \in \mathbb{R}$; and f(t+2) = f(t) for all $t \in \mathbb{R}$. Define $\Phi(t) = (x(t), y(t))$, where

$$x(t) = \sum_{n=1}^{\infty} 2^{-n} f(3^{2n-1}t), \quad y(t) = \sum_{n=1}^{\infty} 2^{-n} f(3^{2n}t).$$

Prove that Φ is continuous and maps the unit interval I = [0, 1] onto the unit square $I^2 \subset \mathbb{R}^2$. (Hint: show that $\Phi(I)$ contains all points of the form $(a/2^n, b/2^n)$, where $a, b \in \mathbb{Z}, 0 \leq a, b \leq 2^n$.)

- 14.* Suppose C is a sequentially compact subset of a normed space V. If $\{U_{\alpha} \mid \alpha \in A\}$ is a family of open subsets of V, we say that the U_{α} cover C if $C \subset \bigcup_{\alpha \in A} U_{\alpha}$.
 - (a) Given $\epsilon > 0$, show that there is a finite set of points $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\} \subset C$ such that $\{B_{\epsilon}(\mathbf{v}_1), \ldots, B_{\epsilon}(\mathbf{v}_n)\}$ cover C.
 - (b) Show that there exists some $\epsilon > 0$ such that for every $\mathbf{v} \in C$, $B_{\epsilon}(\mathbf{v}) \subset U_{\alpha}$ for some α . Deduce that there is a finite set $\{\alpha_1, \ldots, \alpha_n\} \subset A$ such that $\{U_{\alpha_1}, \ldots, U_{\alpha_n}\}$ cover C.

J.Rasmussen@dpmms.cam.ac.uk