
ANALYSIS II—EXAMPLES 3 Mich. 2015

Please email comments, corrections to: n.wickramasekera@dpmms.cam.ac.uk.

1. Quickies: (a) Use the equivalence of norms on a finite dimensional vector space to show that for each n,
there is a constant C such that the following holds: for every polynomial p of degree ≤ n there is x0 ∈ [0, 1/n]
such that |p(x)| ≤ C|p(x0)| for every x ∈ [0, 1].

(b) If (X, d) is a metric space and A is a non-empty subset of X, show that the distance from x ∈ X to A
defined by ρ(x) = infy∈A d(x, y) is a Lipschitz function on X with Lipschitz constant equal to 1.

(c) If every closed, bounded subset of a metric space X is compact, must X be complete?

(d) If every closed proper subset of a metric space X is complete relative to the induced metric, must X be
complete?

(e) If (xn), (yn) are Cauchy sequences in a metric space (X, d), show that (d(xn, yn)) is convergent (in R).

2. (a) Is the set (1, 2] an open subset of the metric space R with the metric d(x, y) = |x − y|? Is it closed?
What if we replace the metric space R with the space [0, 2], the space(1, 3) or the space (1, 2], in each case
with the metric d?

(b) Let X be a set equipped with the discrete metric, and Y any metric space. Describe all open subsets
of X, closed subsets of X, sequentially compact subsets of X, Cauchy sequences in X, continuous functions
X → Y and continuous functions Y → X.

3. For each of the following sets X, determine whether or not the given function d defines a metric on X. In
each case where the function does define a metric, describe the open ball Bε(x) for x ∈ X and ε > 0 small.
(i) X = Rn; d(x, y) = min{|x1 − y1|, |x2 − y2|, . . . , |xn − yn|}.

(ii) X = Z; d(x, x) = 0, and, for x 6= y, d(x, y) = 2n where x− y = 2na with n a non-negative integer and
a an odd integer.

(iii) X is the set of functions from N to N; d(f, f) = 0, and, for f 6= g, d(f, g) = 2−n for the least n such
that f(n) 6= g(n).

(iv) X = C; d(z, w) = |z−w| if z and w lie on the same line through the origin, d(z, w) = |z|+ |w| otherwise.

4. Let (X, d) be a metric space.

(a) Show that the union of any collection of open subsets of X must be open (regardless of whether the
collection is finite, countable or uncountable), and that the intersection of any finite collection of open subsets
is again open. Formulate and prove similar properties about the closed subsets of X.

(b) Let E be a subset of X. Show that there is a unique largest open subset Eo of X contained in E, i.e.
a unique open subset Eo of X such that that Eo ⊆ E and if G is any open subset of X with G ⊆ E then
G ⊆ Eo. Eo is called the interior of E in X. Show also that there is a unique smallest closed subset E of X
containing E, i.e. a unique closed subset E of X with E ⊆ E and if F is any closed subset of X with E ⊆ F
then E ⊆ F . E is called the closure of E in X.

(c) Show that
Eo = {x ∈ X : Bε(x) ⊂ E for some ε > 0}

and that
E = {x ∈ X : xn → x for some sequence (xn) in E}.

5. Let V be a normed space, x ∈ V and r > 0. Prove that the closure of the open ball Br(x) is the closed
ball Dr(x) = {y ∈ V : ‖x − y‖ ≤ r}. Give an example to show that, in a general metric space (X, d), the
closure of the open ball Br(x) need not be the closed ball Dr(x) = {y ∈ X : d(x, y) ≤ r}.

6. In lectures we proved that if E is a closed, bounded subset of Rn with the Euclidean metric, then any
continuous function on E has bounded image. Prove the converse: if E is a subset of Rn with the Euclidean
metric and if every continuous function f : E → R has bounded image, then E is closed and bounded.



7. Each of the following properties/notions makes sense for an arbitrary metric spaces X. Which are
topological (i.e. dependent only on the collection of open subsets of X and not on the metric generating the
open subsets)? Justify your answers.

(i) boundedness of a subset of X.

(ii) closed-ness of a subset of X.

(iii) notion that a subset of X is closed and bounded.

(iv) total boundedness of X; that is, the property that for every ε > 0, there is a finite set F ⊂ X such that
the union of open balls with centres in F and radius ε is X.

(v) completeness of X.

(vi) total boundedness and completeness of X.

8. Use the Contraction Mapping Theorem to show that the equation cosx = x has a unique real solution.
Find this solution to some reasonable accuracy using a calculator (remember to work in radians!), and justify
the claimed accuracy of your approximation.

9. Let I = [0, R] be an interval and let C(I) be the space of continuous functions on I. Show that, for any
α ∈ R, we may define a norm by ‖f‖α = supx∈I |f(x)e−αx|, and that the norm ‖ · ‖α is Lipschitz equivalent
to the uniform norm ‖f‖ = supx∈I |f(x)|.
Now suppose that φ:R2 → R is continuous, and Lipschitz in the second variable. Consider the map T from
C(I) to itself sending f to y0 +

∫ x
0
φ(t, f(t))dt. Give an example to show that T need not be a contraction

under the uniform norm. Show, however, that T is a contraction under the norm ‖·‖α for some α, and hence
deduce that the differential equation f ′(x) = φ(x, f(x)) has a unique solution on I satisfying f(0) = y0.

10. Let (X, d) be a non-empty complete metric space. Suppose f :X → X is a contraction and g:X → X is
a function which commutes with f , i.e. such that f(g(x)) = g(f(x)) for all x ∈ X. Show that g has a fixed
point. Must this fixed point be unique?

11. Give an example of a non-empty complete metric space (X, d) and a function f :X → X satisfying
d(f(x), f(y)) < d(x, y) for all x, y ∈ X with x 6= y, but such that f has no fixed point. Suppose now that X
is a non-empty closed bounded subset of Rn with the Euclidean metric. Show that in this case f must have
a fixed point. If g:X → X satisfies d(g(x), g(y)) ≤ d(x, y) for all x, y ∈ X, must g have a fixed point?

12.? Show that it is not possible to obtain, starting from an arbitrary set X ⊆ Rn and repeatedly applying
the operations (·)o (interior) and (·) (closure), more than seven distinct sets (including X itself). Give an
example in R where seven sets are obtained.

13.? Let (X, d) be a non-empty complete metric space and let f :X → X be a function such that for each
positive integer n we have
(i) if d(x, y) < n+ 1 then d(f(x), f(y)) < n; and

(ii) if d(x, y) < 1/n then d(f(x), f(y)) < 1/(n+ 1).
Must f have a fixed point?

14.? Let K be a closed bounded subset of R and p ∈ K. Construct a metric d on K1 = K \ {p} such that
(K1, d) is complete and the topology generated by d on K1 is the same as the topology generated by the
Euclidean metric on K1.

15.? It is a consequence of the Baire category theorem (which you can learn about in the Linear Analysis course
next year for example) that if f is the pointwise limit of a sequence of continuous functions fn : [a, b]→ R,
then f has a point of continuity (and hence in fact a dense subset of [a, b] of continuity points). Taking
this fact for granted, and considering the family of functions fn,m(x) = (cosn!πx)2m, n,m ∈ N, show that
pointwise convergence of continuous functions on an interval [a, b] is not metrizable. That is to say, show
that there is no metric d on the set of continuous functions f : [a, b] → R such that pointwise convergence
of sequences of functions in this set is equivalent to convergence with respect to d.


