
ANALYSIS II—EXAMPLES 2 Mich. 2015

Please email comments, corrections to: n.wickramasekera@dpmms.cam.ac.uk

1. Quickies: (a) Describe all continuous functions f : [0, 1]→ Rn satisfying ‖
∫ 1

0
f‖ =

∫ 1

0
‖f‖.

(b) Show that two norms ‖ · ‖, ‖ · ‖′ on a vector space V are Lipschitz equivalent if and only if there
exist numbers r,R > 0 such that Br ⊆ B′1 ⊆ BR, where for ρ > 0, Bρ = {x ∈ V : ‖x‖ < ρ} and
B′ρ = {x ∈ V : ‖x‖′ < ρ}.
(c) If (V, ‖ · ‖) is a normed space and ϕ : V → R is a linear functional, show that ‖ · ‖+ |ϕ(·)| defines a norm
on V , and that this norm is not Lipschitz equivalent to ‖ · ‖ if ϕ is not continuous.

(d) If a Cauchy sequence (xn) in a normed space has a subsequence converging to an element x, show that
the whole sequence (xn) converges to x.

2. Let (x(m)) and (y(m)) be sequences in Rn converging to x and y respectively. Show that x(m) · y(m)

converges to x · y. Deduce that if f : Rn → Rp and g : Rn → Rp are continuous at x ∈ Rn, then so is the
pointwise scalar product f · g : Rn → R.

3. (a) Show that ‖f‖1 =
∫ 1

0
|f | defines a norm on the vector space C

(
[0, 1]

)
. Is it Lipschitz equivalent to the

uniform norm? Is C
(
[0, 1]

)
with norm ‖ · ‖1 complete?

(b) Let R
(
[0, 1]

)
denote the vector space of all bounded Riemann integrable functions on [0, 1]. Does

‖f‖1 =
∫ 1

0
|f | define a norm on R

(
[0, 1]

)
? If so, is R

(
[0, 1]

)
complete with this norm? What if we replace

‖ · ‖1 with ‖f‖∞ = sup{|f(x)| : x ∈ [0, 1]}?

4. (a) Let C1([0, 1]) be the vector space of real continuous functions on [0, 1] with continuous first
derivatives. Define functions α, β, γ, δ : C1([0, 1]) → R by α(f) = supx∈[0,1] |f(x)| + supx∈[0,1] |f ′(x)|;
β(f) = supx∈[0,1] (|f(x)|+ |f ′(x)|); γ(f) = supx∈[0,1] |f(x)|; δ(f) = supx∈[0,1] |f ′(x)|. Which of these define

norms on C1([0, 1])? Out of those that define norms, which pairs are Lipschitz equivalent?

(b) Let C1
c ([0, 1]) be the set of functions f ∈ C1([0, 1]) such that f(x) = 0 for x in some neighborhood of

the end points 0 and 1. Verify that C1
c ([0, 1]) is a vector space. How would your answers in (a) change if we

replace C1([0, 1]) by C1
c ([0, 1])?

5. Which of the following subsets of R2 with the Euclidean norm are open? Which are closed? (And why?)
(i) {(x, 0) : 0 ≤ x ≤ 1};

(ii) {(x, 0) : 0 < x < 1};
(iii) {(x, y) : y 6= 0};
(iv) {(x, y) : x ∈ Q or y ∈ Q};
(v) {(x, y) : y = nx for some n ∈ N} ∪ {(x, y) : x = 0};
(vi) {(x, f(x)) : x ∈ R}, where f : R→ R is a continuous function.

6. Is the set {f : f(1/2) = 0} closed in the space C
(
[0, 1]

)
with the uniform norm? What about the set

{f :
∫ 1

0
f = 0}? In each case, does the answer change if we replace the uniform norm with the norm ‖ · ‖1

defined in Q3?

7. Which of the following functions f are continuous?
(i) The linear map f : `∞ → R defined by f(x) =

∑∞
n=1 xn/n

2;
(ii) The identity map from the space C

(
[0, 1]

)
with the uniform norm ‖ · ‖ to the space C

(
[0, 1]

)
with the

norm ‖ · ‖1 defined in Q3;
(iii) The identity map from C

(
[0, 1]

)
with the norm ‖ · ‖1 to C

(
[0, 1]

)
with the uniform norm ‖ · ‖;

(iv) The linear map f : `0 → R defined by f(x) =
∑∞
i=1 xi, where `0 has norm ‖ · ‖∞. (`0 is the space of real

sequences (xk) such that xk = 0 for all but a finite number of k.)

8. Is it possible to find uncountably many norms on C([0, 1]) such that no two are Lipschitz equivalent?

9. Let `1 denote the set of real sequences (xn) such that
∑∞
n=1 |xn| is convergent. Show that, with addition

and scalar multiplication defined termwise, `1 is a vector space. Define ‖ · ‖1: `1 → R by ‖x‖1 =
∑∞
n=1 |xn|.

Show that ‖ · ‖1 is a norm on `1, and that (`1, ‖ · ‖1) is complete.



10?. Let (V, ‖ · ‖) be a normed space. Show that V is complete if and only if V has the property that for
every sequence (xn) in V with

∑∞
j=1 ‖xn‖ convergent, the series

∑∞
n=1 xn is convergent. (Thus V is complete

if and only if every absolutely convergent series in V is convergent.) [Hint: If (xn) is Cauchy, then there is
a subsequence (xnj

) such that
∑
j ‖xnj+1

− xnj
‖ <∞.]

11. Let V be a normed space in which every bounded sequence has a convergent subsequence. (a) Show that
this property of V is equivalent to the sequential compactness of the unit sphere S = {x ∈ V : ‖x‖ = 1}.
(b) Show that V must be complete. (c)? Show further that V must be finite-dimensional.
[Hint for (c): Start by showing that for every finite-dimensional subspace V0 of V , there exists x ∈ V with
‖x+ y‖ > ‖x‖/2 for each y ∈ V0.]

12. Let (x(n))n≥1 be a bounded sequence in `∞. Show that there is a subsequence (x(nj))j≥1 which converges

in every coordinate; that is to say, the sequence (x
(nj)
i )j≥1 of real numbers converges for each i. Why does

this not show that every bounded sequence in `∞ has a convergent subsequence?

13. (a) Let (V, ‖ · ‖) be a complete normed space, and let W be a subspace of V . Show that (W, ‖ · ‖) is
complete if and only if W is closed in V .

(b) Which of the following vector spaces of functions, taken with the uniform norm, are complete?
(i) The space Cb(R) of bounded continuous functions f : R→ R.

(ii) The space C0(R) of continuous functions f : R→ R such that f(x)→ 0 as |x| → ∞.
(iii) The space Cc(R) of continuous functions f : R→ R such that f(x) = 0 for |x| sufficiently large.

14?. Let P be the vector space of real polynomials on the unit interval [0, 1]. Show that for any infinite set
I ⊆ [0, 1], ‖p‖I = supI |p| defines a norm on P. Use this fact to produce an example of a vector space, a
sequence in it and two different norms on it such that the sequence converges to different elements in the
space with respect to the different norms. (Hint: the Weierstrass approximation theorem may be helpful).

Is it possible to find such a sequence in one of the spaces `1 or `2 equipped with two norms, when possible,
chosen from the standard norms on the spaces `1, `2, `∞? What about in the space C([0, 1]) equipped with
two norms chosen from the L1, L2, L∞ norms?

Supplement: A proof of Lebesgue’s theorem on the Riemann integral. Let f : [a, b] → R be
bounded. Recall that Lebesgue’s theorem says that f is Riemann integrable on [a, b] if and only if the set
Df of points in [a, b] where f is discontinuous has Lebesgue measure zero. (By definition, a set D ⊂ R has
Lebesgue measure zero if for every ε > 0, there is a countable collection of open intervals Ij = (aj , bj) such
that D ⊂ ∪∞j=1Ij and

∑∞
j=1 |Ij | < ε, where |Ij | = bj − aj .) As an optional exercise, prove this theorem by

completing the outline below. We shall use the notation as in lectures, so U(P, f), L(P, f) denote the upper
and lower sums for f relative to a partition P of [a, b].

(a) Show that y ∈ Df ∩ (a, b) (i.e. y is an interior discontinuity) if and only if there exists ε = εy > 0 such
that supI f − infI f > ε for every open interval I ⊂ [a, b] with y ∈ I. Hence Df ∩ (a, b) = ∪∞j=1Ej , where

Ej = {y ∈ (a, b) : supI f − infI f > j−1 for every open interval I with y ∈ I}.
(b) Suppose that f is Riemann integrable. It suffices to show that Ej has Lebesgue measure zero for
each j (Why?). Fix j, let ε > 0 and choose a partition P = {a = a0 < a1 < . . . < an = b} such that
U(P, f)− L(P, f) < j−1ε. Let K = {k : Ej ∩ (ak, ak+1) 6= ∅}. Then Ej \ {a0, a1, . . . , an} ⊂ ∪k∈K(ak, ak+1).
Show that

∑
k∈K(ak+1 − ak) < ε. Deduce that Ej has Lebesgue measure zero.

(c) Now suppose that Df has Lebesgue measure zero. Let ε > 0, and choose open intervals Ij ⊂ R,
j = 1, 2, . . . , with Df ⊂ ∪∞j=1Ij and

∑∞
j=1 |Ij | < ε. Let F = [a, b] \ ∪∞j=1Ij . Show that there exists δ > 0

such that the following holds: x ∈ F, y ∈ [a, b], |x − y| < δ ⇒ |f(x) − f(y)| < ε. [This is a strengthening
of the theorem we proved in lecture that says that a continuous function on a closed, bounded interval (or
more generally on a compact metric space) is uniformly continuous, but the same contradiction argument
we used in fact works here.] Let P = {a = a0 < a1 < a2 . . . < an = b} be any partition of [a, b] such that
aj+1 − aj < δ, and let J = {j : [aj , aj+1] ∩ F 6= ∅}. Show that sup[aj ,aj+1] f − inf [aj ,aj+1] f < 2ε for each
j ∈ J , and that ∪j /∈J(aj , aj+1) ⊂ ∪∞j=1Ij . Conclude that U(P, f) − L(P, f) < 2(b − a + sup[a,b] |f |)ε, and
hence that f is Riemann integrable on [a, b].


