ANALYSIS II—EXAMPLES 2 Mich. 2015

Please email comments, corrections to: n.wickramasekera@dpmms.cam.ac.uk

1. Quickies: (a) Describe all continuous functions $f : [0,1] \to \mathbb{R}^n$ satisfying $\|\int_0^1 f\| = \int_0^1 \|f\|$.

(b) Show that two norms $\|\cdot\|$, $\|\cdot\|'$ on a vector space V are Lipschitz equivalent if and only if there exist numbers r, R > 0 such that $B_r \subseteq B'_1 \subseteq B_R$, where for $\rho > 0, B_\rho = \{x \in V : ||x|| < \rho\}$ and $B'_{\rho} = \{ x \in V : \|x\|' < \rho \}.$

(c) If $(V, \|\cdot\|)$ is a normed space and $\varphi : V \to \mathbb{R}$ is a linear functional, show that $\|\cdot\| + |\varphi(\cdot)|$ defines a norm on V, and that this norm is not Lipschitz equivalent to $\|\cdot\|$ if φ is not continuous.

(d) If a Cauchy sequence (x_n) in a normed space has a subsequence converging to an element x, show that the whole sequence (x_n) converges to x.

2. Let $(x^{(m)})$ and $(y^{(m)})$ be sequences in \mathbb{R}^n converging to x and y respectively. Show that $x^{(m)} \cdot y^{(m)}$ converges to $x \cdot y$. Deduce that if $f : \mathbb{R}^n \to \mathbb{R}^p$ and $g : \mathbb{R}^n \to \mathbb{R}^p$ are continuous at $x \in \mathbb{R}^n$, then so is the pointwise scalar product $f \cdot g : \mathbb{R}^n \to \mathbb{R}$.

3. (a) Show that $||f||_1 = \int_0^1 |f|$ defines a norm on the vector space C([0,1]). Is it Lipschitz equivalent to the uniform norm? Is C([0,1]) with norm $\|\cdot\|_1$ complete?

(b) Let R([0,1]) denote the vector space of all bounded Riemann integrable functions on [0,1]. Does $||f||_1 = \int_0^1 |f|$ define a norm on R([0,1])? If so, is R([0,1]) complete with this norm? What if we replace $||\cdot||_1$ with $||f||_{\infty} = \sup\{|f(x)| : x \in [0,1]\}$?

4. (a) Let $C^{1}([0,1])$ be the vector space of real continuous functions on [0,1] with continuous first derivatives. Define functions $\alpha, \beta, \gamma, \delta$: $C^{1}([0,1]) \rightarrow \mathbb{R}$ by $\alpha(f) = \sup_{x \in [0,1]} |f(x)| + \sup_{x \in [0,1]} |f'(x)|;$ $\beta(f) = \sup_{x \in [0,1]} (|f(x)| + |f'(x)|); \ \gamma(f) = \sup_{x \in [0,1]} |f(x)|; \ \delta(f) = \sup_{x \in [0,1]} |f'(x)|.$ Which of these define norms on $C^1([0,1])$? Out of those that define norms, which pairs are Lipschitz equivalent?

(b) Let $C_c^1([0,1])$ be the set of functions $f \in C^1([0,1])$ such that f(x) = 0 for x in some neighborhood of the end points 0 and 1. Verify that $C_c^1([0,1])$ is a vector space. How would your answers in (a) change if we replace $C^1([0,1])$ by $C^1_c([0,1])$?

5. Which of the following subsets of \mathbb{R}^2 with the Euclidean norm are open? Which are closed? (And why?) (i) $\{(x, 0) : 0 < x < 1\};$

- (ii) $\{(x, 0) : 0 < x < 1\};$
- (iii) $\{(x, y) : y \neq 0\};$
- (iv) $\{(x, y) : x \in \mathbb{Q} \text{ or } y \in \mathbb{Q}\};$
- (v) $\{(x, y) : y = nx \text{ for some } n \in \mathbb{N}\} \cup \{(x, y) : x = 0\};$
- (vi) $\{(x, f(x)) : x \in \mathbb{R}\}$, where $f : \mathbb{R} \to \mathbb{R}$ is a continuous function.

6. Is the set $\{f : f(1/2) = 0\}$ closed in the space C([0,1]) with the uniform norm? What about the set $\{f: \int_0^1 f = 0\}$? In each case, does the answer change if we replace the uniform norm with the norm $\|\cdot\|_1$ defined in Q3?

7. Which of the following functions f are continuous?

- (i) The linear map $f: \ell^{\infty} \to \mathbb{R}$ defined by $f(x) = \sum_{n=1}^{\infty} x_n/n^2$; (ii) The identity map from the space C([0, 1]) with the uniform norm $\|\cdot\|$ to the space C([0, 1]) with the norm $\|\cdot\|_1$ defined in Q3;
- (iii) The identity map from C([0,1]) with the norm $\|\cdot\|_1$ to C([0,1]) with the uniform norm $\|\cdot\|$; (iv) The linear map $f: \ell^0 \to \mathbb{R}$ defined by $f(x) = \sum_{i=1}^{\infty} x_i$, where ℓ^0 has norm $\|\cdot\|_{\infty}$. (ℓ^0 is the space of real sequences (x_k) such that $x_k = 0$ for all but a finite number of k.)

8. Is it possible to find uncountably many norms on C([0,1]) such that no two are Lipschitz equivalent?

9. Let ℓ^1 denote the set of real sequences (x_n) such that $\sum_{n=1}^{\infty} |x_n|$ is convergent. Show that, with addition and scalar multiplication defined termwise, ℓ^1 is a vector space. Define $\|\cdot\|_1: \ell^1 \to \mathbb{R}$ by $\|x\|_1 = \sum_{n=1}^{\infty} |x_n|$. Show that $\|\cdot\|_1$ is a norm on ℓ^1 , and that $(\ell^1, \|\cdot\|_1)$ is complete.

10^{*}. Let $(V, \|\cdot\|)$ be a normed space. Show that V is complete if and only if V has the property that for every sequence (x_n) in V with $\sum_{j=1}^{\infty} \|x_n\|$ convergent, the series $\sum_{n=1}^{\infty} x_n$ is convergent. (Thus V is complete if and only if every absolutely convergent series in V is convergent.) [Hint: If (x_n) is Cauchy, then there is a subsequence (x_{n_j}) such that $\sum_j \|x_{n_{j+1}} - x_{n_j}\| < \infty$.]

11. Let V be a normed space in which every bounded sequence has a convergent subsequence. (a) Show that this property of V is equivalent to the sequential compactness of the unit sphere $S = \{x \in V : ||x|| = 1\}$. (b) Show that V must be complete. (c)* Show further that V must be finite-dimensional.

[Hint for (c): Start by showing that for every finite-dimensional subspace V_0 of V, there exists $x \in V$ with ||x + y|| > ||x||/2 for each $y \in V_0$.]

12. Let $(x^{(n)})_{n\geq 1}$ be a bounded sequence in ℓ^{∞} . Show that there is a subsequence $(x^{(n_j)})_{j\geq 1}$ which converges in every coordinate; that is to say, the sequence $(x_i^{(n_j)})_{j\geq 1}$ of real numbers converges for each *i*. Why does this not show that every bounded sequence in ℓ^{∞} has a convergent subsequence?

13. (a) Let $(V, \|\cdot\|)$ be a complete normed space, and let W be a subspace of V. Show that $(W, \|\cdot\|)$ is complete if and only if W is closed in V.

- (b) Which of the following vector spaces of functions, taken with the uniform norm, are complete?
- (i) The space $C_b(\mathbb{R})$ of bounded continuous functions $f : \mathbb{R} \to \mathbb{R}$.
- (ii) The space $C_0(\mathbb{R})$ of continuous functions $f : \mathbb{R} \to \mathbb{R}$ such that $f(x) \to 0$ as $|x| \to \infty$.
- (iii) The space $C_c(\mathbb{R})$ of continuous functions $f : \mathbb{R} \to \mathbb{R}$ such that f(x) = 0 for |x| sufficiently large.

14^{*}. Let \mathcal{P} be the vector space of real polynomials on the unit interval [0, 1]. Show that for any infinite set $I \subseteq [0, 1]$, $||p||_I = \sup_I |p|$ defines a norm on \mathcal{P} . Use this fact to produce an example of a vector space, a sequence in it and two different norms on it such that the sequence converges to different elements in the space with respect to the different norms. (Hint: the Weierstrass approximation theorem may be helpful).

Is it possible to find such a sequence in one of the spaces ℓ^1 or ℓ^2 equipped with two norms, when possible, chosen from the standard norms on the spaces ℓ^1 , ℓ^2 , ℓ^{∞} ? What about in the space C([0, 1]) equipped with two norms chosen from the L^1 , L^2 , L^{∞} norms?

Supplement: A proof of Lebesgue's theorem on the Riemann integral. Let $f : [a,b] \to \mathbb{R}$ be bounded. Recall that Lebesgue's theorem says that f is Riemann integrable on [a,b] if and only if the set \mathcal{D}_f of points in [a,b] where f is discontinuous has Lebesgue measure zero. (By definition, a set $\mathcal{D} \subset \mathbb{R}$ has Lebesgue measure zero if for every $\epsilon > 0$, there is a countable collection of open intervals $I_j = (a_j, b_j)$ such that $\mathcal{D} \subset \bigcup_{j=1}^{\infty} I_j$ and $\sum_{j=1}^{\infty} |I_j| < \epsilon$, where $|I_j| = b_j - a_j$.) As an optional exercise, prove this theorem by completing the outline below. We shall use the notation as in lectures, so U(P, f), L(P, f) denote the upper and lower sums for f relative to a partition P of [a, b].

(a) Show that $y \in \mathcal{D}_f \cap (a, b)$ (i.e. y is an interior discontinuity) if and only if there exists $\epsilon = \epsilon_y > 0$ such that $\sup_I f - \inf_I f > \epsilon$ for every open interval $I \subset [a, b]$ with $y \in I$. Hence $\mathcal{D}_f \cap (a, b) = \bigcup_{j=1}^{\infty} E_j$, where $E_j = \{y \in (a, b) : \sup_I f - \inf_I f > j^{-1} \text{ for every open interval } I \text{ with } y \in I\}.$

(b) Suppose that f is Riemann integrable. It suffices to show that E_j has Lebesgue measure zero for each j (Why?). Fix j, let $\epsilon > 0$ and choose a partition $P = \{a = a_0 < a_1 < \ldots < a_n = b\}$ such that $U(P, f) - L(P, f) < j^{-1}\epsilon$. Let $K = \{k : E_j \cap (a_k, a_{k+1}) \neq \emptyset\}$. Then $E_j \setminus \{a_0, a_1, \ldots, a_n\} \subset \bigcup_{k \in K} (a_k, a_{k+1})$. Show that $\sum_{k \in K} (a_{k+1} - a_k) < \epsilon$. Deduce that E_j has Lebesgue measure zero.

(c) Now suppose that \mathcal{D}_f has Lebesgue measure zero. Let $\epsilon > 0$, and choose open intervals $I_j \subset \mathbb{R}$, $j = 1, 2, \ldots$, with $\mathcal{D}_f \subset \bigcup_{j=1}^{\infty} I_j$ and $\sum_{j=1}^{\infty} |I_j| < \epsilon$. Let $F = [a, b] \setminus \bigcup_{j=1}^{\infty} I_j$. Show that there exists $\delta > 0$ such that the following holds: $x \in F$, $y \in [a, b]$, $|x - y| < \delta \Rightarrow |f(x) - f(y)| < \epsilon$. [This is a strengthening of the theorem we proved in lecture that says that a continuous function on a closed, bounded interval (or more generally on a compact metric space) is uniformly continuous, but the same contradiction argument we used in fact works here.] Let $P = \{a = a_0 < a_1 < a_2 \ldots < a_n = b\}$ be any partition of [a, b] such that $a_{j+1} - a_j < \delta$, and let $J = \{j : [a_j, a_{j+1}] \cap F \neq \emptyset\}$. Show that $\sup_{[a_j, a_{j+1}]} f - \inf_{[a_j, a_{j+1}]} f < 2\epsilon$ for each $j \in J$, and that $\bigcup_{j \notin J} (a_j, a_{j+1}) \subset \bigcup_{j=1}^{\infty} I_j$. Conclude that $U(P, f) - L(P, f) < 2(b - a + \sup_{[a, b]} |f|)\epsilon$, and hence that f is Riemann integrable on [a, b].