
ANALYSIS II—EXAMPLES 4 Mich. 2014

The questions marked with ? are intended as additional. Please email comments, correc-

tions to: n.wickramasekera@dpmms.cam.ac.uk.

1. Quickies: (i) Let F : [0, 1] × Rm → R be continuous and a = (a0, . . . , am−1) ∈ Rm.

Suppose that F is uniformly Lipschitz in the Rm variables near a, i.e. for some constant K

and an open subset U of Rm containing a, |F (t, x)− F (t, y)| ≤ K‖x− y‖ for all t ∈ [0, 1],

x, y ∈ U . Use the Picard–Lindelöf existence theorem for first order ODE systems to show

that there is an ε > 0 such that, writing f (j) for the jth derivative of f , the mth order

initial value problem

f (m)(t) = F (t, f(t), f (1)(t), . . . , f (m−1)(t)) for t ∈ [0, ε);

f (j)(0) = aj for 0 ≤ j ≤ m− 1

has a unique Cm solution f : [0, ε)→ R.

(ii) Let f :Rn → R and a ∈ Rn. If the directional derivatives Duf(a) exist for all directions

u ∈ Rn and if Duf(a) depends linearly on u, does it follow that f is differentiable at a?

(iii) Let f :Rn → R, a ∈ Rn and suppose that f is differentiable at a. Define the gradient

of f at a to be the vector ∇ f(a) = (D1f(a), . . . , Dnf(a)). Show that max{Duf(a) : u ∈
Rn, ‖u‖ = 1} = ‖∇ f(a)‖, and if ∇ f(a) 6= 0, that this maximum is attained when and

only when u = ∇ f(a)
‖∇ f(a)‖ . What does this say about the rates of change of f at a in different

directions?

(iv) Let f : [a, b]→ R2 be continuous, and differentiable on (a, b). Does there exist c ∈ (a, b)

such tat f(b)− f(a) = f ′(c)(b− a)?

(v) Let f :Rn → Rn be a C1 map with ‖Df(x)− I‖ ≤ 1/2 for each x ∈ Rn, where I is the

identity map on Rn. Does it follow that f is one-to-one? Does it follow that f is an open

mapping, i.e. that f maps open sets to open sets?

2. (a) Let f = (f1, . . . , fm):Rn → Rm. Show that f is differentiable at x ∈ Rn iff each

fi:Rn → R is differentiable at x, and in this case, Df(x)(h) = (Df1(x)(h), . . . , Dfm(x)(h))

for each h ∈ Rn.

(b) Define f :R3 → R2 by f(x, y, z) = (ex+y+z, cosx2y). Without making use of partial

derivatives, show that f is everywhere differentiable and find Df(a) at each a ∈ R3.

(c) Find all partial derivatives of f and hence, using appropriate results on partial deriva-

tives, give an alternative proof of the result of (b).

3. LetMn be the space of n×n real matrices. (Note thatMn can be identified with Rn2

.)

Define f :Mn →Mn by f(A) = A4. Show that f is differentiable at every A ∈ Mn, and

find Df(A) as a linear map. Show further that f is twice-differentiable at every A ∈ Mn

and find D2f(A) as a bilinear map from Mn ×Mn to Mn.



4. Let ‖ · ‖ denote the usual Euclidean norm on Rn. Show that the map sending x to ‖x‖2
is differentiable everywhere. What is its derivative? Where is the map sending x to ‖x‖
differentiable and what is its derivative?

5. Consider the map f :R3 → R3 given by f(x) = x/‖x‖ for x 6= 0, and f(0) = 0. Show

that f is differentiable except at 0, and that

Df(x)(h) =
h

‖x‖
− x(x · h)

‖x‖3
.

Verify that Df(x)(h) is orthogonal to x and explain geometrically why this is the case.

6. At which points of R2 is the function f(x, y) = |x||y| differentiable? What about the

function g:R2 → R defined by g(x, y) = xy/
√
x2 + y2 if (x, y) 6= (0, 0), g(0, 0) = 0?

7. Show that the function det:Mn → R is differentiable at the identity matrix I with

D det(I)(H) = tr(H). Deduce that det is differentiable at any invertible matrix A with

D det(A)(H) = detA tr(A−1H). Show further that det is twice differentiable at I and find

D2 det(I) as a bilinear map.

8. Define f :Mn → Mn by f(A) = A2. Show that f is continuously differentiable

on the whole of Mn. Deduce that there is a continuous square-root function on some

neighbourhood of I; that is, show that there is an open ball Bε(I) for some ε > 0 and a

continuous function g:Bε(I)→Mn such that g(A)2 = A for all A ∈ Bε(I). Is it possible

to define a continuous square-root function on the whole of Mn?

9. Let f be a real-valued function on a subset E of R2 such that that f(·, y) is continuous

for each fixed y ∈ E and f(x, ·) is continuous for each fixed x ∈ E. Give an example to

show that f need not be continuous on E. If additionally f(·, y) is Lipschitz for each y ∈ E
with Lipschitz constant independent of y and E has the property that E ∩ L is an open

subset of L for every line L parallel to the y-axis, show that f is continuous on E. Deduce

that if U is an open subset of R2, f :U → R, D1f exists and is bounded on U and f(x, ·)
is continuous for each fixed x ∈ U, then f is continuous on U .

10. Let f :R2 → R and a ∈ R2. If D1f exists in some open ball around a and is continuous

at a, and if D2f exists at a, show that f is differentiable at a.

11. Let C = {(x, y) ∈ R2 : x3 + y3 − 3xy = 0} and define F :R2 → R2 by F (x, y) = (x, x3+

y3 − 3xy). Show that F is locally C1-invertible around each point of C except (0, 0) and

(2
2
3 , 2

1
3 ); that is, show that if (x0, y0) ∈ C\{(0, 0), (2

2
3 , 2

1
3 )} then there are open sets U

containing (x0, y0) and V containing F (x0, y0) = (x0, 0) such that F maps U bijectively to

V with inverse a C1 function. What is the derivative of the inverse function? Deduce that

for each point (x0, y0) ∈ C\{(0, 0), (2
2
3 , 2

1
3 )}, there exists an open interval I ⊂ R containing

x0 and a C1 function g: I → R such that C ∩ V = graph g (graph g = {(x, g(x)) : x ∈ I}).



12. (i) Let E be a subset of R. Show that E is path-connected if and only if E is an interval,

i.e. E is of the form (a, b), [a, b), (a, b] or [a, b] for some a, b with −∞ ≤ a ≤ b ≤ ∞. [Hint:

Let b = sup E and a = inf E (allowing ±∞). Use the intermediate value theorem to show

that if E is path-connected, then any x with a < x < b belongs to E.]

(ii) Let U be a non-empty open subset of Rn. Show that U is path-connected ⇐⇒
whenever U = U1 ∪ U2 for disjoint open subsets U1, U2 of Rn, either U1 or U2 is empty.

[Hint: For the direction ⇒, use the theorem that says that a function with zero derivative

on a path-connected open set must be constant; for ⇐, show first that the relation x ∼
y ⇐⇒ there exists a continuous map γ : [0, 1] → U with γ(0) = x, γ(1) = y is an

equivalence relation on U with each equivalence class (called a path component) an open

subset.]

13?. For a, b ∈ Rn and a continuous map γ: [0, 1]→ Rn with γ(0) = a, γ(1) = b, define the

length `(γ) of γ to be `(γ) = sup
∑N
j=1 ‖γ(tj) − γ(tj−1)‖ where the sup is taken over all

finite partitions 0 = t0 < t1 < . . . < tN = 1.

(i) Give an example for which `(γ) =∞. If γ is continuously differentiable on [0, 1], show

that `(γ) <∞ and that in fact `(γ) =
∫ 1

0
‖γ′(t)‖ dt.

(ii) For a path-connected subset E of Rn and a, b ∈ E, define d(a, b) = inf `(γ), where

the inf is taken over all continuous γ: [0, 1] → E with γ(0) = a, γ(1) = b. Show, for

any a, b, c ∈ E, that d(a, b) ≥ 0 with equality iff a = b, that d(a, b) = d(b, a) and that

d(a, b) ≤ d(a, c) + d(c, b).

14?. Let U be a path-connected open subset of Rn and f :U → Rm be differentiable

on U with ‖Df(x)‖ ≤ M for some constant M and all x ∈ U . Does it follow that

‖f(b)−f(a)‖ ≤M‖b−a‖ for every a, b ∈ U? Does it follow that ‖f(b)−f(a)‖ ≤Md(a, b)

for every a, b ∈ U , where d is as in Q13(ii) with E = U?

15?. (i) Let f be a real-valued C2 function on an open subset U of R2. If f has a

local maximum at a point a ∈ U (meaning that there is ρ > 0 such that Bρ(a) ⊂ U and

f(x) ≤ f(a) for every x ∈ Bρ(a)), show that Df(a) = 0 and that the matrix H = (Dijf(a))

is negative semi-definite (i.e. has non-positive eigenvalues).

(ii) Let U be a bounded open subset of R2 and let f :U → R be continuous on U (the closure

of U) and C2 in U. If f satisfies the partial differential inequality ∆ f+aD1f+bD2f+cf ≥ 0

in U where ∆ is the Laplace’s operator defined by ∆ f = D11f +D22f , and a, b, c are real-

valued functions on U with c < 0 on U , and if f is positive somewhere in U , show that

sup
U

f = sup
∂ U

f

where ∂ U = U \U is the boundary of U . Deduce that if a, b, c are as above, ϕ: ∂ U → R is a

given continuous function, then for any g:R2 → R there is at most one continuous function

f on U that is C2 in U and solves the boundary value problem ∆ f+aD1f+bD2f+cf = g

in U , f = ϕ on ∂ U .


