1. Let (X, d) and (Y, e) be metric spaces, with X non-empty. Suppose that Y is bounded, i.e. there is some $M \in \mathbb{R}$ such that $e(x,y) \leq M$ for all $x, y \in Y$. Let Z be the set of functions from X to Y. Show that $D(f,g) = \sup_{x \in X} e(f(x), g(x))$ defines a metric on Z.

2. Let V be a normed space, $x \in V$ and r > 0. Prove that the closure of the open ball $B_r(x)$ is the closed ball $A_r(x) = \{y \in V : ||x - y|| \le r\}$. Give an example to show that, in a general metric space (X, d), the closure of the open ball $B_r(x)$ need not be the closed ball $A_r(x) = \{y \in X : d(x, y) \le r\}$.

3. (a) Show that $||f||_1 = \int_0^1 |f|$ defines a norm on the vector space C([0,1]). Is it Lipschitz equivalent to the uniform norm? Is C([0,1]) with norm $||\cdot||_1$ complete?

(b) Let R([0,1]) denote the vector space of all (Riemann) integrable functions on [0,1]. Does $||f||_1 = \int_0^1 |f|$ define a norm on R([0,1])? If so, is R([0,1]) complete with this norm? What if we replace $\|\cdot\|_1$ with $||f||_{\infty} = \sup\{|f(x)| : x \in [0,1]\}?$

4. Is the set $\{f : f(1/2) = 0\}$ closed in the space C([0,1]) with the uniform norm? What about the set $\{f: \int_0^1 f = 0\}$? In each case, does the answer change if we replace the uniform norm with the norm $\|\cdot\|_1$?

5. Which of the following functions f are continuous?

- (i) The linear map $f: \ell^{\infty} \to \mathbb{R}$ defined by $f(x) = \sum_{n=1}^{\infty} x_n/n^2$; (ii) The identity map from the space C([0, 1]) with the uniform norm $\|\cdot\|$ to the space C([0, 1]) with the norm $\|\cdot\|_1$ as defined in Q3;
- (iii) The identity map from C([0,1]) with the norm $\|\cdot\|_1$ to C([0,1]) with the uniform norm $\|\cdot\|$; (iv) The linear map $f: \ell^0 \to \mathbb{R}$ defined by $f(x) = \sum_{i=1}^{\infty} x_i$, where ℓ^0 has norm $\|\cdot\|_{\infty}$.

6. Let ℓ^1 denote the vector space of real sequences (x_n) such that $\sum_{n=1}^{\infty} x_n$ is absolutely convergent, with addition and scalar multiplication defined pointwise. Define $\|\cdot\|_1: \ell^1 \to \mathbb{R}$ by $\|x\|_1 = \sum_{n=1}^{\infty} |x_n|$. Show that $\|\cdot\|_1$ is a norm, and that ℓ^1 endowed with this norm is complete.

7. (a) Let $(V, \|\cdot\|)$ be a complete normed space and (x_n) a sequence in V such that $\sum_{n=1}^{\infty} \|x_n\|$ converges. Show that $\sum_{n=1}^{\infty} x_n$ converges.

8. Let V be a normed space in which every bounded sequence has a convergent subsequence. Show that V must be complete. +Show further that V must be finite-dimensional.

9. Let $(x^{(n)})_{n\geq 1}$ be a bounded sequence in ℓ^{∞} . Show that there is a subsequence $(x^{(n_j)})_{j\geq 1}$ which converges in every coordinate; that is to say, the sequence $(x_i^{(n_j)})_{j\geq 1}$ of real numbers converges for each *i*. Why does this not show that every bounded sequence in ℓ^{∞} has a convergent subsequence?

10. Is it possible to find uncountably many norms on ℓ^0 such that no two are Lipschitz equivalent?

11. Let (X, d) be a non-empty complete metric space. Suppose $f: X \to X$ is a contraction and $g: X \to X$ is a function which commutes with f, i.e. such that f(g(x)) = g(f(x)) for all $x \in X$. Show that g has a fixed point. Must this fixed point be unique?

12. Give an example of a non-empty complete metric space (X,d) and a function $f: X \to X$ satisfying d(f(x), f(y)) < d(x, y) for all $x, y \in X$ with $x \neq y$, but such that f has no fixed point. Suppose now that X is a non-empty closed bounded subset of \mathbb{R}^n with the Euclidean metric. Show that in this case f must have a fixed point. If $g: X \to X$ satisfies $d(g(x), g(y)) \leq d(x, y)$ for all $x, y \in X$, must g have a fixed point?

13. Let (X, d) be a non-empty complete metric space and let $f: X \to X$ be a function such that for each positive integer n we have

(i) if d(x, y) < n + 1 then d(f(x), f(y)) < n; and (ii) if d(x, y) < 1/n then d(f(x), f(y)) < 1/(n+1).

Must f have a fixed point?