1. Let $(x^{(m)})$ and $(y^{(m)})$ be sequences in \mathbb{R}^n converging to x and y respectively. Show that $x^{(m)} \cdot y^{(m)} \to x \cdot y$. Deduce that if $f: \mathbb{R}^n \to \mathbb{R}^p$ and $g: \mathbb{R}^n \to \mathbb{R}^p$ are continuous at $x \in \mathbb{R}^n$ then so is the pointwise scalar product function $f \cdot g: \mathbb{R}^n \to \mathbb{R}$.

2. Define $f: [0, \pi] \to \mathbb{C}$ by $f(x) = e^{ix}$. Calculate $\int_0^{\pi} f$.

3. Which of the following subsets of \mathbb{R}^2 are open? Which are closed? (And why?)

- (i) $\{(x,0): 0 \le x \le 1\};$
- (ii) $\{(x,0) : 0 < x < 1\};$
- (iii) $\{(x, y) : y \neq 0\};$
- (iv) $\{(x, y) : y = nx \text{ for some } n \in \mathbb{N}\} \cup \{(x, y) : x = 0\};$
- (v) $\{(x, y) : y = qx \text{ for some } q \in \mathbb{Q}\} \cup \{(x, y) : x = 0\};$
- (vi) $\{(x, f(x)) : x \in \mathbb{R}\}$, where $f: \mathbb{R} \to \mathbb{R}$ is a continuous function.

4. Is the set $\{(x, x \sin \frac{1}{x}) : x \in (0, \infty)\} \cup \{(0, 0)\}$ a path-connected subset of \mathbb{R}^2 ? What about the set $\{(x, \sin \frac{1}{x}) : x \in (0, \infty)\} \cup \{(0, 0)\}$?

5. Let $K \subset \mathbb{R}^n$ and let $f: K \to \mathbb{R}^m$ be continuous on K. If K is closed, must f(K) be closed? If K is bounded, must f(K) be bounded?

6. Is the set (1,2] an open subset of the metric space \mathbb{R} with metric d(x,y) = |x-y|? Is it closed? What if we replace the metric space \mathbb{R} by the metric space [0,2], the metric space (1,3) or the metric space (1,2], in each case with metric d(x,y) = |x-y|?

7. For each of the following sets X, determine whether or not the given function d defines a metric on X. In each case where the function does define a metric, describe the open ball $B_{\varepsilon}(x)$ for $x \in X$ and $\varepsilon > 0$ small.

(i) $X = \mathbb{R}^n$; $d(x, y) = \min\{|x_1 - y_1|, |x_2 - y_2|, \dots, |x_n - y_n|\}.$

- (ii) $X = \mathbb{Z}$; d(x, x) = 0, and, for $x \neq y$, $d(x, y) = 2^n$ where $x y = 2^n a$ with n a non-negative integer and a an odd integer.
- (iii) X is the set of functions from N to N; d(f, f) = 0, and, for $f \neq g$, $d(f, g) = 2^{-n}$ for the least n such that $f(n) \neq g(n)$.
- (iv) $X = \mathbb{C}$; d(z, w) = |z w| if z and w lie on the same line through the origin, d(z, w) = |z| + |w| otherwise.

8. Let d and d' denote the usual and discrete metrics respectively on \mathbb{R} . Show that all functions f from \mathbb{R} with metric d' to \mathbb{R} with metric d are continuous. What are the continuous functions from \mathbb{R} with metric d to \mathbb{R} with metric d'?

9. For $X, Y \subset \mathbb{R}^n$, define $X + Y = \{x + y : x \in X, y \in Y\}$. Give examples of closed sets $X, Y \subset \mathbb{R}^n$ for some *n* such that X + Y is not closed. Show that it is not possible to find such an example with X bounded. If $V, W \subset \mathbb{R}^n$ are open, must V + W be open?

10. (a) Show that the union of any collection of open subsets of \mathbb{R}^n must be open (regardless of whether the collection be finite or infinite, countable or uncountable), and that the intersection of any collection of closed subsets of \mathbb{R}^n must be closed.

(b) We define the *interior* of a set $X \subset \mathbb{R}^n$ to be the largest open set X° contained in X, and the *closure* of $X \subset \mathbb{R}^n$ to be the smallest closed set \overline{X} containing X. Why does the result of (a) tell us that these definitions make sense?

(c) Show that

$$X^{\circ} = \{ x \in X : B_{\varepsilon}(x) \subset X \text{ for some } \varepsilon > 0 \}$$

and that

 $\bar{X} = \{ x \in \mathbb{R}^n : x^{(m)} \to x \text{ for some sequence } (x^{(m)}) \text{ in } X \}.$

11. Starting from an arbitrary set $X \subset \mathbb{R}^n$ and repeatedly applying the operations $(\cdot)^{\circ}$ and $(\overline{\cdot})$, show that it is not possible to obtain more than seven distinct sets (including X itself). Give an example in \mathbb{R} where seven distinct sets are obtained.

12. Does there exist a continuous surjection $f: \mathbb{R} \to \mathbb{R}^2$? Does there exist a continuous injection $f: \mathbb{R}^2 \to \mathbb{R}$? In each case, what happens if we replace \mathbb{R}^2 with the metric space ℓ^{∞} ?

⁺13. Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a function under which the image of any path-connected set is path-connected and the image of any closed bounded set is closed and bounded. Show that f must be continuous.