- 1. Is the set (1,2] an open subset of the metric space \mathbb{R} with metric d(x,y) = |x-y|? Is it closed? What if we replace the metric space \mathbb{R} by the metric space [0,2], the metric space (1,3) or the metric space (1,2], in each case with metric d(x,y) = |x-y|?
- 2. For each of the following sets X, determine whether or not the given function d defines a metric on X. In each case where the function does define a metric, describe the open ball $B_{\varepsilon}(x)$ for $x \in X$ and $\varepsilon > 0$ small.
- (i) $X = \mathbb{R}^n$; $d(x,y) = \min\{|x_1 y_1|, |x_2 y_2|, \dots, |x_n y_n|\}$. (ii) $X = \mathbb{Z}$; d(x,x) = 0, and, for $x \neq y$, $d(x,y) = 2^n$ where $x y = 2^n a$ with n a non-negative integer and
- (iii) X is the set of functions from N to N; d(f,f)=0, and, for $f\neq g$, $d(f,g)=2^{-n}$ for the least n such that $f(n) \neq g(n)$.
- (iv) $X = \mathbb{C}$; d(z, w) = |z w| if z and w lie on the same line through the origin, d(z, w) = |z| + |w| otherwise.
- 3. Let d and d' denote the usual and discrete metrics respectively on \mathbb{R} . Show that all functions f from \mathbb{R} with metric d' to $\mathbb R$ with metric d are continuous. What are the continuous functions from $\mathbb R$ with metric dto \mathbb{R} with metric d'?
- 4. Let V be a normed space, $x \in V$ and r > 0. Prove that the closure of the open ball $B_r(x)$ is the closed ball $A_r(x) = \{y \in V : ||x - y|| \le r\}$. Give an example to show that, in a general metric space (X, d), the closure of the open ball $B_r(x)$ need not be the closed ball $A_r(x) = \{y \in X : d(x,y) \le r\}$.
- 5. (a) Show that $||f||_1 = \int_0^1 |f|$ defines a norm on the vector space C([0,1]). Is it Lipschitz equivalent to the uniform norm? Is C([0,1]) with norm $\|\cdot\|_1$ complete?
- (b) Let R([0,1]) denote the vector space of all (Riemann) integrable functions on [0,1]. Does $||f||_1 = \int_0^1 |f|$ define a norm on R([0,1])?
- 6. Is the set $\{f: f(1/2)=0\}$ closed in the space C([0,1]) with the uniform norm? What about the set $\{f: \int_0^1 f = 0\}$? In each case, does the answer change if we replace the uniform norm with the norm $\|\cdot\|_1$?
- 7. Which of the following functions f are continuous? (i) The linear map $f: \ell^{\infty} \to \mathbb{R}$ defined by $f(x) = \sum_{n=1}^{\infty} x_n/n^2$;
- (ii) The identity map from the space C([0,1]) with the uniform norm $\|\cdot\|$ to the space C([0,1]) with the norm $\|\cdot\|_1$ as defined in Q3;
- (iii) The identity map from C([0,1]) with the norm $\|\cdot\|_1$ to C([0,1]) with the uniform norm $\|\cdot\|_1$; (iv) The linear map $f: \ell^0 \to \mathbb{R}$ defined by $f(x) = \sum_{i=1}^{\infty} x_i$.
- 8. Let ℓ^1 denote the vector space of real sequences (x_n) such that $\sum_{n=1}^{\infty} x_n$ is absolutely convergent, with addition and scalar multiplication defined pointwise. Define $\|\cdot\|_1:\ell^1\to\mathbb{R}$ by $\|x\|_1=\sum_{n=1}^{\infty}|x_n|$. Show that $\|\cdot\|_1$ is a norm, and that ℓ^1 endowed with this norm is complete.
- 9. Let $(V, \|\cdot\|)$ be a complete normed space and (x_n) a sequence in V such that $\sum_{n=1}^{\infty} \|x_n\|$ converges. Show that $\sum_{n=1}^{\infty} x_n$ converges.
- 10. Let V be a normed space in which every bounded sequence has a convergent subsequence. Show that Vmust be complete. +Show further that V must be finite-dimensional.
- 11. Let $(x^{(n)})_{n\geq 1}$ be a bounded sequence in ℓ^{∞} . Show that there is a subsequence $(x^{(n_j)})_{j\geq 1}$ which converges in every coordinate; that is to say, the sequence $(x_i^{(n_j)})_{j\geq 1}$ of real numbers converges for each i. Why does this not show that every bounded sequence in ℓ^{∞} has a convergent subsequence?
- 12. Is it possible to find uncountably many norms on ℓ^0 such that no two are Lipschitz equivalent?
- 13. Does there exist a continuous surjection $f: \mathbb{R} \to \ell^{\infty}$?