1. Let $f, g: \mathbb{R}^n \to \mathbb{R}^m$ be continuous. Show that the function $f + g: \mathbb{R}^n \to \mathbb{R}^m$ is continuous.

2. Let $f: \mathbb{R}^n \to \mathbb{R}^p$ be continuous at the point $x \in \mathbb{R}^n$, and let $g: \mathbb{R}^p \to \mathbb{R}^q$ be continuous at the point $f(x) \in \mathbb{R}^p$. Show that the composition $g \circ f: \mathbb{R}^n \to \mathbb{R}^q$ is continuous at x.

3. Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a function and let $x \in \mathbb{R}^n$. Suppose that for any sequence $(x^{(k)})$ in \mathbb{R}^n with $x^{(k)} \to x$ we have $f(x^{(k)}) \to f(x)$. Show that f must be continuous at x.

4. Show that a sequence $(x^{(n)})$ in \mathbb{R}^m is Cauchy if and only if the sequences $(x_i^{(n)})$ are Cauchy for each i with $1 \leq i \leq m$.

5. Which of the following subsets of \mathbb{R}^2 are open? Which are closed? (And why?)

(i) $\{(x,0): 0 \le x \le 1\};$

- (ii) $\{(x,0): 0 < x < 1\};$
- (iii) $\{(x, y) : y \neq 0\};$

(iv) $\{(x, y) : y = nx \text{ for some } n \in \mathbb{N}\} \cup \{(x, y) : x = 0\};$

- (v) $\{(x, y) : y = qx \text{ for some } q \in \mathbb{Q}\} \cup \{(x, y) : x = 0\};$
- (vi) $\{(x, f(x)) : x \in \mathbb{R}\}$, where $f: \mathbb{R} \to \mathbb{R}$ is a continuous function.

6. Is the set $\{(x, x \sin \frac{1}{x}) : x \in (0, \infty)\} \cup \{(0, 0)\}$ a path-connected subset of \mathbb{R}^2 ? What about the set $\{(x, \sin \frac{1}{x}) : x \in (0, \infty)\} \cup \{(0, 0)\}$?

7. Let $(x^{(n)})$ be a sequence in \mathbb{R}^m such that $\sum_{n=1}^{\infty} \|x^{(n)}\|$ converges. Show that $\sum_{n=1}^{\infty} x^{(n)}$ converges.

8. Let $K \subset \mathbb{R}^n$ and let $f: K \to \mathbb{R}^m$ be continuous on K. If K is closed, must f(K) be closed? If K is bounded, must f(K) be bounded?

9. For $X, Y \subset \mathbb{R}^n$, define $X + Y = \{x + y : x \in X, y \in Y\}$. Give examples of closed sets $X, Y \subset \mathbb{R}^n$ for some *n* such that X + Y is not closed. Show that it is not possible to find such an example with X bounded. If $V, W \subset \mathbb{R}^n$ are open, must V + W be open?

10. (a) Show that the union of any collection of open subsets of \mathbb{R}^n must be open (regardless of whether the collection be finite or infinite, countable or uncountable), and that the intersection of any collection of closed subsets of \mathbb{R}^n must be closed.

(b) We define the *interior* of a set $X \subset \mathbb{R}^n$ to be the largest open set X° contained in X, and the *closure* of $X \subset \mathbb{R}^n$ to be the smallest closed set \overline{X} containing X. Why does the result of (a) tell us that these definitions make sense?

(c) Show that

$$X^{\circ} = \{ x \in X : B_{\varepsilon}(x) \subset X \text{ for some } \varepsilon > 0 \}$$

and that

$$\overline{X} = \{x \in \mathbb{R}^n : x^{(m)} \to x \text{ for some sequence } (x^{(m)}) \text{ in } X\}$$

11. Starting from an arbitrary set $X \subset \mathbb{R}^n$ and repeatedly applying the operations $(\cdot)^{\circ}$ and (\cdot) , show that it is not possible to obtain more than seven distinct sets (including X itself). Give an example in \mathbb{R} where seven distinct sets are obtained.

12. Does there exist a continuous surjection $f: \mathbb{R} \to \mathbb{R}^2$? Does there exist a continuous injection $f: \mathbb{R}^2 \to \mathbb{R}$?

+13. Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a function under which the image of any path-connected set is path-connected and the image of any closed bounded set is closed and bounded. Show that f must be continuous.