ANALYSIS II (Michaelmas 2010): EXAMPLES 3

The questions are not equally difficult. The questions marked with * may be harder, but merit some attention even if you do not write out solutions. Comments, corrections are welcome at any time and may be sent to a.j.scholl@dpmms.cam.ac.uk.

(I am generally using the notation $D_a f$ for the derivative of f at a.)

1. Let $\|\cdot\|$ denote the usual Euclidean norm on \mathbb{R}^n . Show that the map sending x to $\|x\|^2$ is differentiable everywhere. What is its derivative? Where is the map sending x to $\|x\|$ differentiable and what is its derivative?

2. At which points of \mathbb{R}^2 are the following functions $\mathbb{R}^2 \to \mathbb{R}$ differentiable?

(i)
$$f(x,y) = \begin{cases} x/y & y \neq 0, \\ 0 & y = 0. \end{cases}$$

(ii)
$$f(x,y) = |x||y|.$$

(iii)
$$f(x,y) = xy |x - y|.$$

(iv)
$$f(x,y) = \begin{cases} xy/\sqrt{x^2 + y^2} & (x,y) \neq (0,0), \\ 0 & (x,y) = (0,0). \end{cases}$$

(v)
$$f(x,y) = \begin{cases} xy \sin(1/x) & x \neq 0, \\ 0 & x = 0. \end{cases}$$

3. Let $f(x,y) = x^2 y/(x^2 + y^2)$ for $(x,y) \neq (0,0)$, and f(0,0) = 0. Show that f is continuous at (0,0) and that it has directional derivatives in all directions there (i.e. for any fixed α , the function $t \mapsto f(t \cos \alpha, t \sin \alpha)$ is differentiable at t = 0). Is f differentiable at (0,0)?

4. We work in \mathbb{R}^3 with the usual inner product. Consider the map $f : \mathbb{R}^3 \to \mathbb{R}^3$ given by f(x) = x/||x|| for $x \neq 0$ and f(0) = 0. Show that f is differentiable except at 0 and

$$D_a f(u) = \frac{u}{\|a\|} - \frac{a(a \cdot u)}{\|a\|^3}, \qquad a \neq 0, \ u \in \mathbb{R}^3$$

Verify that $D_a f(u)$ is orthogonal to a and explain geometrically why this is the case.

5. (i) Suppose that $f : \mathbb{R}^2 \to \mathbb{R}$ is such that $\partial f / \partial x$ is continuous in some open ball around (a, b), and $\partial f / \partial y$ exists at (a, b). Show that f is differentiable at (a, b).

(ii) Suppose that $f : \mathbb{R}^2 \to \mathbb{R}$ is such that $\partial f / \partial x$ exists and is bounded near (a, b), and that for a fixed, f(a, y) is continuous as a function of y. Show that f is continuous at (a, b).

6. Let $M_n = M_n(\mathbb{R})$ be the space of $n \times n$ real matrices (it can be identified with \mathbb{R}^{n^2}). Show that the function $f: M_n \to M_n$ defined by $f(X) = X^2$ is differentiable everywhere in M_n . Is it true that $D_A f = 2A$? If not, what is the derivative of f?

7. Let $A: \mathbb{R}^n \to \mathbb{R}^m$ be a linear map. Recall that the *operator norm* of A is

$$||A|| = \sup \{ ||Ax|| : x \in \mathbb{R}^n, ||x|| \le 1 \} = \sup \left\{ \frac{||Ax||}{||x||} : 0 \ne x \in \mathbb{R}^n \right\}.$$

Complete the proof that this defines a norm on the vector space $L(\mathbb{R}^n, \mathbb{R}^m)$ of all linear maps $\mathbb{R}^n \to \mathbb{R}^m$.

Now assume m = n and identify $L(\mathbb{R}^n, \mathbb{R}^n)$ with $M_n(\mathbb{R})$, the space of $n \times n$ real matrices. Show that if the operator norm of $A \in M_n$ satisfies ||A|| < 1, then the sequence $B_k = I + A + A^2 + \ldots + A^{k-1}$ converges (here I is the identity matrix), and deduce that I - A is then invertible. Deduce that the set $GL_n(\mathbb{R})$ of all invertible $n \times n$ real matrices is an open subset of $M_n(\mathbb{R})$. 8. We regard $GL_n(\mathbb{R})$ as an open subset of $M_n(\mathbb{R}) \simeq \mathbb{R}^{n^2}$ (cf. the previous question). Define $g: GL_n(\mathbb{R}) \to M_n(\mathbb{R})$ by $g(X) = X^{-1}$ for $X \in GL_n(\mathbb{R})$. Show that g is differentiable at the identity matrix $I \in GL_n(\mathbb{R})$, and that its derivative there is the map $D_I g: H \mapsto -H$.

Let $A \in GL_n(\mathbb{R})$. By writing $(A + H)^{-1} = A^{-1}(I + HA^{-1})^{-1}$, or otherwise, show that g is differentiable at X = A. What is $D_A g$?

Show further that g is twice differentiable at I, and find $D_I^2 g$ as a bilinear map $M_n \times M_n \to M_n$.

9. (i) Define $f: M_n \to M_n$ by $f(X) = X^3$. Find the Taylor series of f(A+H) about A.

(ii)* (This assumes that you did the previous question!) Let again $g: GL_n(\mathbb{R}) \to GL_n(\mathbb{R})$ be defined by $g(X) = X^{-1}$. Find the Taylor series of g(I + H) about I.

10.^{*} Show that det : $M_n \to \mathbb{R}$ is differentiable at the identity matrix I with $(D_I \det)(H) = \operatorname{tr}(H)$. Deduce that det is differentiable at any invertible matrix A with $(D_A \det)(H) = \det(A) \operatorname{tr}(A^{-1}H)$. Show further that det is twice differentiable at I and find $D_I^2 \det$ as a bilinear map.

11. Show that there is a continuous square-root function on some neighbourhood of I in M_n ; that is, show that there is an open ball $B(I;r) \subset M_n$ for some r > 0 and a continuous function $g: B(I;r) \to M_n$ such that $g(X)^2 = X$ for all $X \in B(I;r)$.

Is it possible to define a square-root function on all of M_n ? What about a cube-root function?

12. Define $f : \mathbb{R}^2 \to \mathbb{R}^2$ by $f(x, y) = (x, x^3 + y^3 - 3xy)$ and let $C = \{(x, y) \in \mathbb{R}^2 : x^3 + y^3 - 3xy = 0\}$. Show that f is locally invertible around each point of C except (0, 0) and $(2^{\frac{2}{3}}, 2^{\frac{1}{3}})$; that is, show that if $(x_0, y_0) \in C \setminus \{(0, 0), (2^{\frac{2}{3}}, 2^{\frac{1}{3}})\}$ then there are open sets U containing (x_0, y_0) and V containing $f(x_0, y_0)$ such that f maps U bijectively to V. What is the derivative of the local inverse function? Deduce that for each point $(x_0, y_0) \in C$ other than (0, 0) and $(2^{\frac{2}{3}}, 2^{\frac{1}{3}})$ there exist open intervals I containing x_0 and J containing y_0 such that for each $x \in I$ there is a unique $y \in J$ with $(x, y) \in C$.

13. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a differentiable function and let g(x) = f(x, c - x) where c is a constant. Show that $g : \mathbb{R} \to \mathbb{R}$ is differentiable and find its derivative

(i) directly from the definition of differentiability and also

(ii) by using the chain rule.

Deduce that if $\partial f/\partial x = \partial f/\partial y$ holds throughout \mathbb{R}^2 , then f(x, y) = h(x + y) for some differentiable function h.

14.* Let $U \subset \mathbb{R}^2$ be an open set that contains a rectangle $[a, b] \times [c, d]$. Suppose that $g: U \to \mathbb{R}$ is continuous and that the partial derivative $\partial g/\partial y$ exists and is continuous. Set $G(y) = \int_a^b g(x, y) dx$. Show that G is differentiable on (c, d) with derivative $G'(y) = \int_a^b (\partial g/\partial y)(x, y) dx$. Show further that $H(y) = \int_a^y g(x, y) dx$ is differentiable. What is its derivative H'(y)? [Hint: consider a function $F(y, z) = \int_a^z g(x, y) dx$ before dealing with H.]