
ANALYSIS II (Michaelmas 2010): EXAMPLES 1

The questions are not equally difficult. Those marked with ∗ are intended as ‘additional’, to be
attempted if you wish to take things further. Comments, corrections are welcome at any time
and may be sent to a.j.scholl@dpmms.cam.ac.uk.

1. Which of the following sequences of functions converge uniformly on X?

(a) fn(x) = xn on X = (0, 1
2
);

(b) fn(x) = sin(n2x)/ log n on X = R;

(c) fn(x) = xn on X = (0, 1);

(d) fn(x) = xn − x2n on X = [0, 1];

(e) fn(x) = xe−nx on X = [0,∞);

(f) fn(x) = e−x
2

sin(x/n) on X = R.

2. Suppose that f : [0, 1] → R is continuous. Show that the sequence (xnf(x)) is uniformly
convergent on [0, 1] if and only if f(1) = 0.

3. Let f and g be uniformly continuous real-valued functions on a set E ⊆ R. Show that the
pointwise sum f + g is uniformly continuous on E, and so is λf for each real constant λ. Give
an example showing that the (pointwise) product fg need not be uniformly continuous on E. Is
it possible to find such an example with f bounded?

4. Let (fn) be a sequence of continuous real-valued functions on a closed, bounded interval [a, b],
and suppose that fn converges pointwise to a continuous function f .

Show that if fn → f uniformly on [a, b] and (xm) is a sequence of points in [a, b] with xm → x,
then fn(xn) → f(x). [Careful — this is not quite as easy as it looks!]

On the other hand, show that if fn does not converge uniformly to f , then we can find a
convergent sequence xm → x in [a, b] such that fn(xn) does not converge to f(x).
[Hint: Bolzano–Weierstrass.]

5. Which of the following functions f on [0,∞) are (a) uniformly continuous, (b) bounded?

(i) f(x) = sinx2;

(ii) f(x) = inf
{

|x− n2| : n ∈ N
}

;

(iii) f(x) = (sinx3)/(x+ 1).

6. Suppose that f : [0,∞) → R is continuous and that f(x) tends to a (finite) limit as x → ∞.
Is f necessarily uniformly continuous on [0,∞)? Give a proof or a counter-example as appropriate.

7. Show that if (fn) is a sequence of uniformly continuous functions on R, and fn → f uniformly
on R, then f is uniformly continuous. Give an example of a sequence of uniformly continuous
functions fn on R, such that fn converges pointwise to a continuous function f , but f is not
uniformly continuous.
[Hint for the last part: choose the limit function f first.]

8. Let fn(x) = nαxn(1− x), where α is a real constant.

(i) For which values of α does fn(x) → 0 pointwise on [0, 1]?

(ii) For which values of α does fn(x) → 0 uniformly on [0, 1]?

(iii) For which values of α does
∫

1

0
fn(x)dx → 0?

(iv) For which values of α does f ′

n(x) → 0 pointwise on [0, 1]?

(v) For which values of α does f ′

n(x) → 0 uniformly on [0, 1]?



9. Consider the sequence of functions fn : R\Z → R defined by fn(x) =
∑

n

m=−n
(x−m)−2. Show

that fn converges pointwise on R \ Z to a function f . Show that fn does not converge uniformly
on R \ Z. Why can we nevertheless conclude that the limit function f is continuous, and indeed
differentiable, on R \ Z?

10. Let f be a differentiable, real-valued function on a (bounded or unbounded) interval E ⊆ R,
and suppose that f ′ is bounded on E. Show that f is uniformly continuous on E.

Let g : [−1, 1] → R be the function defined by g(x) = x2 sin(1/x2), for x 6= 0 and g(0) = 0.
Show that g is differentiable, but its derivative is unbounded. Is g uniformly continuous on [−1, 1]?

11. Suppose that a function f has a continuous derivative on (a, b) ⊆ R and

fn(x) = n
(

f(x+
1

n
)− f(x)

)

.

Show that fn converges uniformly to f ′ on each interval [α, β] ⊂ (a, b).

12. Let
∑

∞

n=1
an be an absolutely convergent series of real numbers. Define a sequence (fn) of

functions on [−π, π] by fn(x) =
∑

n

m=1
am sinmx and show that each fn is differentiable with

f ′

n(x) =
∑

n

m=1
mam cosmx.

Show further that f(x) =
∑

∞

m=1
am sinmx defines a continuous function on [−π, π], but that

the series
∑

∞

m=1
mam cosmx need not converge.

13.∗ Let f be a bounded function defined on a set E ⊆ R, and for each positive integer n let gn
be a function defined on E by

gn(x) = sup
{

|f(y)− f(x)| : y ∈ E, |y − x| < 1/n
}

.

Show that f is uniformly continuous on E if and only if gn → 0 uniformly on E as n → ∞.

14.∗ (Dini’s theorem) Let fn : [0, 1] → R be a sequence of continuous functions converging
pointwise to a continuous function f : [0, 1] → R. Suppose that fn(x) is a decreasing sequence
fn(x) ≥ fn+1(x) for each x ∈ [0, 1]. Show that fn → f uniformly on [0, 1].
[If you have done Metric and Topological Spaces then you may prefer to find a topological proof.]

15.∗ (Abel’s test) Let an and bn be real-valued functions on E ⊆ R. Suppose that
∑

∞

n=0
an(x)

is uniformly convergent on E. Suppose further that the bn(x) are uniformly bounded on E (this
means there is a constant K with |bn(x)| ≤ K for all n and all x ∈ E), and that bn(x) ≥ bn+1(x)
for all n and all x ∈ E. Show that the sum

∑

∞

n=0
an(x)bn(x) is uniformly convergent on E.

[Hint: show first that
∑

m

k=n
akbk =

∑

m−1

k=n
(bk−bk+1)Ak+bmAm−bnAn−1, where An =

∑

n

k=0
ak.]

Deduce that if an are real constants and
∑

∞

n=0
an is convergent, then

∑

∞

n=0
anx

n is uniformly
convergent on [0, 1]. (But note that

∑

∞

n=0
anx

n need not be convergent at x = −1; you almost
certainly know a counterexample!)

16.∗ Define ϕ(x) = |x| for x ∈ [−1, 1] and extend the definition of ϕ(x) to all real x by requiring
that

ϕ(x+ 2) = ϕ(x).

(i) Show that |ϕ(s)− ϕ(t)| ≤ |s− t| for all s and t.
(ii) Define f(x) =

∑

∞

n=0

(

3

4

)n
ϕ(4nx). Prove that f is well-defined and continuous.

(iii) Fix a real number x and positive integer m. Put δm = ±1

2
4−m, where the sign is so chosen

that no integer lies between 4mx and 4m(x+ δm). Prove that
∣

∣

∣

∣

f(x+ δm)− f(x)

δm

∣

∣

∣

∣

≥
1

2
(3m + 1).

Conclude that f is not differentiable at x. Hence there exists a real continuous function on the
real line which is nowhere differentiable.


