ANALYSIS II (Michaelmas 2009): EXAMPLES 4

The questions are not equally difficult. The questions marked with * may be harder, but merit some attention even if you do not write out solutions. Comments, corrections are welcome at any time and may be sent to a.g.kovalev@dpmms.cam.ac.uk.

- 1. Let $\|\cdot\|$ denote the usual Euclidean norm on \mathbb{R}^n . Show that the map sending x to $\|x\|^2$ is differentiable everywhere. What is its derivative? Where is the map sending x to ||x|| differentiable and what is its derivative?
- **2.** At which points of \mathbb{R}^2 are the following functions $\mathbb{R}^2 \to \mathbb{R}$ differentiable?

(i)
$$f(x,y) = \begin{cases} x/y & y \neq 0, \\ 0 & y = 0. \end{cases}$$

(ii) $f(x,y) = |x||y|$.

(iii) f(x, y) = xy |x - y|.

(ii)
$$f(x,y) = xy |x-y|$$
.
(iv) $f(x,y) = \begin{cases} xy/\sqrt{x^2 + y^2} & (x,y) \neq (0,0), \\ 0 & (x,y) = (0,0). \end{cases}$
(v) $f(x,y) = \begin{cases} xy \sin(1/x) & x \neq 0, \\ 0 & x = 0. \end{cases}$

- **3.** Let $f(x,y) = x^2 y/(x^2 + y^2)$ for $(x,y) \neq (0,0)$, and f(0,0) = 0. Show that f is continuous at (0,0) and that it has directional derivatives in all directions there (i.e. for any fixed α , the function $t \mapsto f(t\cos\alpha, t\sin\alpha)$ is differentiable at t=0). Is f differentiable at (0,0)?
- **4.** We work in \mathbb{R}^3 with the usual inner product. Consider the map $f:\mathbb{R}^3\to\mathbb{R}^3$ given by f(x) = x/||x|| for $x \neq 0$ and f(0) = 0. Show that f is differentiable except at 0 and

$$Df(x) h = \frac{h}{\|x\|} - \frac{x(x \cdot h)}{\|x\|^3}.$$

Verify that Df(x) h is orthogonal to x and explain geometrically why this is the case.

- **5.** (i) Suppose that $f: \mathbb{R}^2 \to \mathbb{R}$ is such that $D_1 f = \partial f / \partial x$ is continuous in some open ball around (a,b), and $D_2f = \partial f/\partial y$ exists at (a,b). Show that f is differentiable at (a,b).
- (ii) Suppose that $f: \mathbb{R}^2 \to \mathbb{R}$ is such that $D_1 f = \partial f / \partial x$ exists and is bounded near (a,b), and that for a fixed, f(a, y) is continuous as a function of y. Show that f is continuous at (a, b).
- **6.** Let $M_n = M_n(\mathbb{R})$ be the space of $n \times n$ real matrices (it can be identified with \mathbb{R}^{n^2}). Show that the function $f: M_n \to M_n$ defined by $f(A) = A^2$ is differentiable everywhere in M_n . Is it true that Df(A) = 2A? If not, what is the derivative of f at A?
- 7. Let $A: \mathbb{R}^n \to \mathbb{R}^m$ be a linear map. Show that

$$\sup\{\|Ax\|: x \in \mathbb{R}^n, \|x\| \le 1\} = \inf\{k \in \mathbb{R}: k \text{ is a Lipschitz constant for } A\}.$$

Show that the function which assigns to A the common value of these two expressions is a norm on the vector space $L(\mathbb{R}^n, \mathbb{R}^m)$ of all linear maps $\mathbb{R}^n \to \mathbb{R}^m$. [This is the operator norm on $L(\mathbb{R}^n,\mathbb{R}^m)$.]

Now assume m=n and identify $L(\mathbb{R}^n,\mathbb{R}^n)$ with M_n using the standard basis of \mathbb{R}^n . Show that if the operator norm of $A \in M_n$ satisfies ||A|| < 1, then the sequence $B_k = I + A + A^2 + \ldots + A^{k-1}$ converges (here I is the identity matrix), and deduce that I - A is then invertible. Deduce that the set $GL_n(\mathbb{R})$ of all invertible $n \times n$ real matrices is an open subset of M_n .

- **8.** Define $g: GL_n(\mathbb{R}) \to GL_n(\mathbb{R})$ by $g(A) = A^{-1}$. Show that g is differentiable at the identity matrix $I \in GL_n(\mathbb{R})$, and that Dg(I)H = -H.
- Let $A \in GL_n(\mathbb{R})$. By writing $(A+H)^{-1} = A^{-1}(I+HA^{-1})^{-1}$, or otherwise, show that g is differentiable at A. What is Dg(A)?

Show further that g is twice differentiable at I, and find $D^2g(I)$ as a bilinear map.

- **9.** (i) Define $f: M_n \to M_n$ by $f(A) = A^3$. Find the Taylor series of f(A+H) about A.
- (ii)* (This assumes that you did the previous question!) Let again $g: GL_n(\mathbb{R}) \to GL_n(\mathbb{R})$ be defined by $g(A) = A^{-1}$. Find the Taylor series of g(I + H) about I.
- **10.*** Show that det : $M_n \to \mathbb{R}$ is differentiable at the identity matrix I with $(D \det)(I)H = \operatorname{tr}(H)$. Deduce that det is differentiable at any invertible matrix A with $(D \det)(A)H = \det A \operatorname{tr}(A^{-1}H)$. Show further that det is twice differentiable at I and find $D^2 \det(I)$ as a bilinear map.
- **11.** Show that there is a continuous square-root function on some neighbourhood of I in M_n ; that is, show that there is an open ball $B_{\varepsilon}(I) \subset M_n$ for some $\varepsilon > 0$ and a continuous function $g: B_{\varepsilon}(I) \to M_n$ such that $g(A)^2 = A$ for all $A \in B_{\varepsilon}(I)$.

Is it possible to define a square-root function on all of M_n ? What about a cube-root function?

- 12. Define $f: \mathbb{R}^2 \to \mathbb{R}^2$ by $f(x,y) = (x,x^3+y^3-3xy)$ and let $C = \{(x,y) \in \mathbb{R}^2 : x^3+y^3-3xy=0\}$. Show that f is locally invertible around each point of C except (0,0) and $(2^{\frac{2}{3}},2^{\frac{1}{3}})$; that is, show that if $(x_0,y_0) \in C \setminus \{(0,0),(2^{\frac{2}{3}},2^{\frac{1}{3}})\}$ then there are open sets U containing (x_0,y_0) and V containing $f(x_0,y_0)$ such that f maps U bijectively to V. What is the derivative of the local inverse function? Deduce that for each point $(x_0,y_0) \in C$ other than (0,0) and $(2^{\frac{2}{3}},2^{\frac{1}{3}})$ there exist open intervals I containing x_0 and J containing y_0 such that for each $x \in I$ there is a unique $y \in J$ with $(x,y) \in C$.
- **13.** Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a differentiable function and let g(x) = f(x, c x) where c is a constant. Show that $g: \mathbb{R} \to \mathbb{R}$ is differentiable and find its derivative
- (i) directly from the definition of differentiability and also
 - (ii) by using the chain rule.

Deduce that if $D_1 f = D_2 f$ holds throughout \mathbb{R}^2 , then f(x,y) = h(x+y) for some differentiable function h.

14.* Let $U \subset \mathbb{R}^2$ be an open set that contains a rectangle $[a,b] \times [c,d]$. Suppose that $g: U \to \mathbb{R}$ is continuous and that the partial derivative D_2g exists and is continuous. Set $G(y) = \int_a^b g(x,y) dx$. Show that G is differentiable on (c,d) with derivative $G'(y) = \int_a^b D_2g(x,y) dx$. Show further that $H(y) = \int_a^y g(x,y) dx$ is differentiable. What is its derivative H'(y)?

[Hint: consider a function $F(y,z) = \int_a^z g(x,y) dx$ before dealing with H.]