ANALYSIS II (Michaelmas 2009): EXAMPLES 1

The questions are not equally difficult. Those marked with * are intended as 'additional', to be attempted if you wish to take things further. Comments, corrections are welcome at any time and may be sent to a.g.kovalev@dpmms.cam.ac.uk.

- 1. Which of the following sequences of functions converge uniformly on X?
 - (a) $f_n(x) = x^n$ on $X = (0, \frac{1}{2})$;
 - (b) $f_n(x) = \sin(n^2 x) / \log n$ on $X = \mathbb{R}$;
 - (c) $f_n(x) = x^n$ on X = (0,1);
 - (d) $f_n(x) = x^n x^{2n}$ on X = [0, 1];
 - (e) $f_n(x) = xe^{-nx}$ on $X = [0, \infty)$;
 - (f) $f_n(x) = e^{-x^2} \sin(x/n)$ on $X = \mathbb{R}$.
- **2.** Suppose that $f:[0,1] \to \mathbb{R}$ is continuous. Show that the sequence $(x^n f(x))$ is uniformly convergent on [0,1] if and only if f(1)=0.
- **3.** Let f and g be uniformly continuous real-valued functions on a set $E \subseteq \mathbb{R}$. Show that the pointwise sum f + g is uniformly continuous on E, and so is λf for each real constant λ . Give an example showing that the (pointwise) product fg need not be uniformly continuous on E. Is it possible to find such an example with f bounded?
- **4.** Let (f_n) be a sequence of continuous real-valued functions on a closed, bounded interval [a, b], and suppose that f_n converges pointwise to a continuous function f.

Show that if $f_n \to f$ uniformly on [a, b] and (x_m) is a sequence of points in [a, b] with $x_m \to x$, then $f_n(x_n) \to f(x)$. [Careful — this is not quite as easy as it looks!]

On the other hand, show that if f_n does **not** converge uniformly to f, then we can find a convergent sequence $x_m \to x$ in [a,b] such that $f_n(x_n)$ does not converge to f(x). [Hint: Bolzano-Weierstrass.]

- **5.** Which of the following functions f on $[0,\infty)$ are (a) uniformly continuous, (b) bounded?
 - (i) $f(x) = \sin x^2$;
 - (ii) $f(x) = \inf\{|x n^2| : n \in \mathbb{N}\};$
 - (iii) $f(x) = (\sin x^3)/(x+1)$.
- **6.** Suppose that $f:[0,\infty)\to\mathbb{R}$ is continuous and that f(x) tends to a (finite) limit as $x\to\infty$. Is f necessarily uniformly continuous on $[0,\infty)$? Give a proof or a counter-example as appropriate.
- 7. Show that if (f_n) is a sequence of uniformly continuous functions on \mathbb{R} , and $f_n \to f$ uniformly on \mathbb{R} , then f is uniformly continuous. Give an example of a sequence of uniformly continuous functions f_n on \mathbb{R} , such that f_n converges pointwise to a continuous function f, but f is not uniformly continuous.

[Hint for the last part: choose the limit function f first.]

- **8.** Let $f_n(x) = n^{\alpha} x^n (1-x)$, where α is a real constant.
 - (i) For which values of α does $f_n(x) \to 0$ pointwise on [0,1]?
 - (ii) For which values of α does $f_n(x) \to 0$ uniformly on [0,1]?
 - (iii) For which values of α does $\int_0^1 f_n(x) dx \to 0$?
 - (iv) For which values of α does $f'_n(x) \to 0$ pointwise on [0,1]?
 - (v) For which values of α does $f'_n(x) \to 0$ uniformly on [0,1]?

- **9.** Consider the sequence of functions $f_n: \mathbb{R} \setminus \mathbb{Z} \to \mathbb{R}$ defined by $f_n(x) = \sum_{m=-n}^n (x-m)^{-2}$. Show that f_n converges pointwise on $\mathbb{R} \setminus \mathbb{Z}$ to a function f. Show that f_n does not converge uniformly on $\mathbb{R} \setminus \mathbb{Z}$. Why can we nevertheless conclude that the limit function f is continuous, and indeed differentiable, on $\mathbb{R} \setminus \mathbb{Z}$?
- 10. Let f be a differentiable, real-valued function on a (bounded or unbounded) interval $E \subseteq \mathbb{R}$, and suppose that f' is bounded on E. Show that f is uniformly continuous on E.

Let $g: [-1,1] \to \mathbb{R}$ be the function defined by $g(x) = x^2 \sin(1/x^2)$, for $x \neq 0$ and g(0) = 0. Show that q is differentiable, but its derivative is unbounded. Is q uniformly continuous on [-1,1]?

11. Suppose that a function f has a continuous derivative on $(a,b) \subseteq \mathbb{R}$ and

$$f_n(x) = n\left(f\left(x + \frac{1}{n}\right) - f(x)\right).$$

Show that f_n converges uniformly to f' on each interval $[\alpha, \beta] \subset (a, b)$.

12. Let $\sum_{n=1}^{\infty} a_n$ be an absolutely convergent series of real numbers. Define a sequence (f_n) of functions on $[-\pi, \pi]$ by $f_n(x) = \sum_{m=1}^n a_m \sin mx$ and show that each f_n is differentiable with $f_n'(x) = \sum_{m=1}^n m a_m \cos mx.$

Show further that $f(x) = \sum_{m=1}^{\infty} a_m \sin mx$ defines a continuous function on $[-\pi, \pi]$, but that the series $\sum_{m=1}^{\infty} ma_m \cos mx$ need not converge.

13.* Let f be a bounded function defined on a set $E \subseteq \mathbb{R}$, and for each positive integer n let g_n be a function defined on E by

$$g_n(x) = \sup\{|f(y) - f(x)| : y \in E, |y - x| < 1/n\}.$$

Show that f is uniformly continuous on E if and only if $g_n \to 0$ uniformly on E as $n \to \infty$.

- **14.*** (Dini's theorem) Let $f_n:[0,1]\to\mathbb{R}$ be a sequence of continuous functions converging pointwise to a continuous function $f:[0,1]\to\mathbb{R}$. Suppose that $f_n(x)$ is a decreasing sequence $f_n(x) \geq f_{n+1}(x)$ for each $x \in [0,1]$. Show that $f_n \to f$ uniformly on [0,1]. If you have done Metric and Topological Spaces then you may prefer to find a topological proof.
- **15.*** (Abel's test) Let a_n and b_n be real-valued functions on $E \subseteq \mathbb{R}$. Suppose that $\sum_{n=0}^{\infty} a_n(x)$ is uniformly convergent on E. Suppose further that the $b_n(x)$ are uniformly bounded on E (this means there is a constant K with $|b_n(x)| \leq K$ for all n and all $x \in E$), and that $b_n(x) \geq b_{n+1}(x)$ for all n and all $x \in E$. Show that the sum $\sum_{n=0}^{\infty} a_n(x)b_n(x)$ is uniformly convergent on E. [Hint: show first that $\sum_{k=n}^{m} a_k b_k = \sum_{k=n}^{m-1} (b_k - b_{k+1})A_k + b_m A_m - b_n A_{n-1}$, where $A_n = \sum_{k=0}^{n} a_k$.]

Deduce that if a_n are real constants and $\sum_{n=0}^{\infty} a_n$ is convergent, then $\sum_{n=0}^{\infty} a_n x^n$ is uniformly convergent on [0,1]. (But note that $\sum_{n=0}^{\infty} a_n x^n$ need not be convergent at x=-1; you almost certainly know a counterexample!)

16.* Define $\varphi(x) = |x|$ for $x \in [-1, 1]$ and extend the definition of $\varphi(x)$ to all real x by requiring that

$$\varphi(x+2) = \varphi(x).$$

- (i) Show that $|\varphi(s) \varphi(t)| \leq |s t|$ for all s and t. (ii) Define $f(x) = \sum_{n=0}^{\infty} \left(\frac{3}{4}\right)^n \varphi(4^n x)$. Prove that f is well-defined and continuous.
- (iii) Fix a real number x and positive integer m. Put $\delta_m = \pm \frac{1}{2} 4^{-m}$, where the sign is so chosen that no integer lies between $4^m x$ and $4^m (x + \delta_m)$. Prove that

$$\left| \frac{f(x + \delta_m) - f(x)}{\delta_m} \right| \ge \frac{1}{2} (3^m + 1).$$

Conclude that f is not differentiable at x. Hence there exists a real continuous function on the real line which is nowhere differentiable.