Unless stated otherwise, the space \mathbb{R}^n may be assumed to have the Euclidean norm $||x|| = \sqrt{\sum_{i=1}^n x_i^2}$, and the spaces ℓ_{∞} and ℓ_0 the uniform norm $||x|| = \sup_i |x_i|$.

1. Let $(x^{(m)})$ and $(y^{(m)})$ be sequences in \mathbb{R}^n converging to x and y respectively. Show that $x^{(m)} \cdot y^{(m)} \to x \cdot y$. Deduce that if $f: \mathbb{R}^n \to \mathbb{R}^p$ and $g: \mathbb{R}^n \to \mathbb{R}^p$ are continuous at $x \in \mathbb{R}^n$ then so is the pointwise scalar product function $f \cdot g: \mathbb{R}^n \to \mathbb{R}$.

2. Show that $||x||_1 = \sum_{i=1}^n |x_i|$ defines a norm on \mathbb{R}^n . Show directly that it is Lipschitz equivalent to the Euclidean norm.

3. (a) Show that $||f||_1 = \int_0^1 |f|$ defines a norm on the vector space C([0,1]). Is it Lipschitz equivalent to the uniform norm?

(b) Let R([0,1]) denote the vector space of all integrable functions on [0,1]. Does $||f||_1 = \int_0^1 |f|$ define a norm on R([0,1])?

4. Which of the following subsets of \mathbb{R}^2 are open? Which are closed? (And why?)

(i) $\{(x,0): 0 \le x \le 1\};$

(ii) $\{(x,0) : 0 < x < 1\};$

(iii) $\{(x, y) : y \neq 0\};$

(iv) $\{(x, y) : y = nx \text{ for some } n \in \mathbb{N}\} \cup \{(x, y) : x = 0\};$

- (v) $\{(x,y): y = qx \text{ for some } q \in \mathbb{Q}\} \cup \{(x,y): x = 0\};$
- (vi) $\{(x, f(x)) : x \in \mathbb{R}\}$, where $f : \mathbb{R} \to \mathbb{R}$ is a continuous function;

5. Is the set $\{(x, x \sin \frac{1}{x}) : x \in (0, \infty)\} \cup \{(0, 0)\}$ a path-connected subset of \mathbb{R}^2 ? What about the set $\{(x, \sin\frac{1}{x}) : x \in (0, \infty)\} \cup \{(0, 0)\}?$

6. Is the set $\{f : f(1/2) = 0\}$ closed in the space C([0,1]) with the uniform norm? What about the set ${f:\int_0^1 f=0}$? In each case, does the answer change if we replace the uniform norm with the norm $\|\cdot\|_1$ defined in Q3?

7. Which of the following functions f are continuous?

- (i) The linear map $f: \ell_{\infty} \to \mathbb{R}$ defined by $f(x) = \sum_{n=1}^{\infty} x_n/n^2$; (ii) The identity map from the space C([0, 1]) with the uniform norm $\|\cdot\|$ to the space C([0, 1]) with the norm $\|\cdot\|_1$ as defined in Q3;
- (iii) The identity map from C([0,1]) with the norm $\|\cdot\|_1$ to C([0,1]) with the uniform norm $\|\cdot\|$; (iv) The linear map $f: \ell_0 \to \mathbb{R}$ defined by $f(x) = \sum_{i=1}^{\infty} x_i$.

8. For X, $Y \subset \mathbb{R}^n$, define $X + Y = \{x + y : x \in X, y \in Y\}$. Give examples of closed sets X, $Y \subset \mathbb{R}^n$ for some n such that X + Y is not closed. Show that it is not possible to find such an example with X bounded. If $V, W \subset \mathbb{R}^n$ are open, must V + W be open?

9. (a) Show that the space ℓ_{∞} is complete. Show also that $c_0 = \{x \in \ell_{\infty} : x_n \to 0\}$, the vector subspace of ℓ_{∞} consisting of all sequences converging to 0, is complete.

(b) Define a norm $\|\cdot\|$ on the space R([0,1]) of Q3 by $\|f\| = \sup\{|f(x)| : x \in [0,1]\}$. Is it complete?

10. Let $\alpha: \mathbb{R}^n \to \mathbb{R}^m$ be a linear map. Show that $||x||' = ||x|| + ||\alpha x||$ defines a norm on \mathbb{R}^n . Using the fact that all norms on a finite-dimensional space are Lipschitz equivalent, deduce that α is continuous.

11. Let V be a normed space in which every bounded sequence has a convergent subsequence. Show that V must be complete. +Show further that V must be finite-dimensional.

12. Let $(x^{(n)})_{n\geq 1}$ be a bounded sequence in ℓ_{∞} . Show that there is a subsequence $(x^{(n_j)})_{j\geq 1}$ which converges in every co-ordinate; that is to say, the sequence $(x_i^{(n_j)})_{j\geq 1}$ of real numbers converges for each *i*. Why does this not show that every bounded sequence in ℓ_{∞} has a convergent subsequence?

13. Show that $||x||_1 = \sum_{i=1}^{\infty} |x_i|$ defines a norm on ℓ_0 , and that this norm is not Lipschitz equivalent to the uniform norm $|| \cdot ||$. Find a third norm on ℓ_0 which is equivalent neither to $|| \cdot ||_1$ nor to $|| \cdot ||$. Is it possible to find uncountably many norms on ℓ_0 such that no two are Lipschitz equivalent?

⁺14. Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a function under which the image of any path-connected set is path-connected and the image of any closed bounded set is closed and bounded. Show that f must be continuous.