Mich. 2007 ANALYSIS II—EXAMPLES 4 PAR

1. At which points are the following functions $f: \mathbb{R}^2 \to \mathbb{R}$ differentiable?

(i)
$$f(x,y) = \begin{cases} x/y & y \neq 0 \\ 0 & y = 0 \end{cases}$$
;
(ii) $f(x,y) = |x||y|$;
(iii) $f(x,y) = xy|x - y|$;
(iv) $f(x,y) = \begin{cases} xy/\sqrt{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$;
(v) $f(x,y) = \begin{cases} xy \sin(1/x) & x \neq 0 \\ 0 & x = 0 \end{cases}$.

2. Let $\|\cdot\|$ denote the usual Euclidean norm on \mathbb{R}^n . Show that the map sending x to $\|x\|^2$ is differentiable everywhere. What is its derivative? Where is the map sending x to $\|x\|$ differentiable and what is its derivative?

3. We work in \mathbb{R}^3 with the Euclidean norm. Consider the map $f: \mathbb{R}^3 \to \mathbb{R}^3$ given by f(x) = x/||x|| for $x \neq 0$, and f(0) = 0. Show that f is differentiable except at 0, and that

$$Df|_x(h) = \frac{h}{\|x\|} - \frac{x(x \cdot h)}{\|x\|^3}.$$

Verify that $Df|_x(h)$ is orthogonal to x and explain geometrically why this is the case.

4. Let $f: \mathbb{R}^n \to \mathbb{R}^m$ and $x \in \mathbb{R}^n$. For $e \in \mathbb{R}^n$ with $e \neq 0$, the directional derivative of f at x in direction e is defined to be

$$D_e f(x) = \lim_{h \to 0} \frac{f(x+he) - f(x)}{h},$$

when this limit exists. Show that if f is differentiable at x then the directional derivative $D_e f(x)$ exists for every $e \neq 0$. If the directional derivative $D_e f(x)$ exists for every $e \neq 0$, must f be differentiable at x?

5. Let \mathcal{M}_n denote the space of $n \times n$ real matrices with the operator norm $\|\cdot\|$. Show that $\|AB\| \leq \|A\| \|B\|$ for all $A, B \in \mathcal{M}_n$.

6. Define $f: \mathcal{M}_n \to \mathcal{M}_n$ by $f(A) = A^2$. Show that f is differentiable everywhere and find its derivative.

7. Let $\mathcal{N}_n \subset \mathcal{M}_n$ be the set of invertible $n \times n$ matrices. Show that \mathcal{N}_n is an open subset of \mathcal{M}_n .

Define $f: \mathcal{N}_n \to \mathcal{N}_n$ by $f(A) = A^{-1}$. Show that f is differentiable at the identity matrix I, and that $Df|_I(H) = -H$.

Let $B \in \mathcal{N}_n$ and define $g_L, g_R: \mathcal{N}_n \to \mathcal{N}_n$ by $g_L(A) = B^{-1}A$ and $g_R(A) = AB^{-1}$. Show that $f = g_R \circ f \circ g_L$ and hence, or otherwise, show that f is differentiable at B. What is $Df|_B$?

8. Define exp: $\mathcal{M}_n \to \mathcal{M}_n$ by $\exp(A) = \sum_{n=0}^{\infty} A^n / n!$. Why is this function well-defined? Show that exp is differentiable at 0. What is $D \exp|_0$?

Show that there is an open set $U \subset \mathcal{M}_n$ with $I \in U$ on which there is a well-defined logarithm; that is, there is a function $\log: U \to \mathcal{M}_n$ such that $\exp(\log(A)) = A$ for all $A \in U$. Show that log is differentiable at I. What is $D \log |_I$? 9. Show that det : $\mathcal{M}_n \to \mathbb{R}$ is differentiable at the identity matrix I with $D \det|_I(H) = \operatorname{tr}(H)$. Deduce that det is differentiable at any invertible matrix A with $D \det|_A(H) = \det A \operatorname{tr}(A^{-1}H)$. Show further that det is twice differentiable at I and find $D^2 \det|_I$ as a bilinear map from $\mathcal{M}_n \times \mathcal{M}_n$ to \mathbb{R} .

- 10. (a) Define $f: \mathcal{M}_n \to \mathcal{M}_n$ by $f(A) = A^3$. Find the Taylor series of f(A+H) about A.
- (b) Define $g: \mathcal{N}_n \to \mathcal{N}_n$ by $g(A) = A^{-1}$. Find the Taylor series of g(I+H) about I.
- 11. Let $f: \mathbb{R}^2 \to \mathbb{R}$ and $(a, b) \in \mathbb{R}^2$.

(a) Suppose that $D_1 f$ exists and is continuous in some open ball around (a, b), and that $D_2 f$ exists at (a, b). Show that f is differentiable at (a, b).

(b) Suppose instead that $D_1 f$ exists and is bounded on some open ball around (a, b), and that for fixed x the function $y \mapsto f(x, y)$ is continuous. Show that f is continuous at (a, b).

- 12. Define $f: \mathbb{R}^2 \to \mathbb{R}$ by $f(x, y) = xy(x^2 y^2)/(x^2 + y^2)$ for $(x, y) \neq (0, 0)$, and f(0, 0) = 0. Show that (i) f is continuous on \mathbb{R}^2 ;
- (ii) the partial derivatives $D_1 f$ and $D_2 f$ exist and are continuous on \mathbb{R}^2 ; and
- (iii) the partial derivatives D_1D_2f and D_2D_1f exist on \mathbb{R}^2 .

Where are D_1D_2f and D_2D_1f continuous? Is $D_1D_2f(0,0) = D_2D_1f(0,0)$?

13. Let $U \subset \mathbb{R}^n$ be open and path-connected. Show that any two points $x, y \in U$ can be joined by a *polygonal* path in U, that is a path consisting of finitely many line-segments. Deduce the result that if $f: U \to \mathbb{R}^m$ is differentiable on U with $Df|_x = 0$ for all $x \in U$ then f is constant.