- 1. (a) Is the set (1,2] an open subset of the metric space \mathbb{R} with metric d(x,y) = |x-y|? Is it closed?
- (b) Is the set (1,2] an open subset of the metric space [0,2] with metric d(x,y) = |x-y|? Is it closed?
- (c) Is the set (1,2] an open subset of the metric space (1,3) with metric d(x,y) = |x-y|? Is it closed?
- (d) Is the set (1,2] an open subset of the metric space $(1,2] \cup (3,4]$ with metric d(x,y) = |x-y|? Is it closed?
- 2. For each of the following sets X, determine whether or not the given function d defines a metric on X. In each case where the function does define a metric, describe the open ball $B_{\varepsilon}(x)$ for each $x \in X$ and $\varepsilon > 0$
- (i) $X = \mathbb{R}^n$; $d(x, y) = \min\{|x_1 y_1|, |x_2 y_2|, \dots, |x_n y_n|\}.$
- (ii) $X = \mathbb{Z}$; d(x, x) = 0 and for $x \neq y$, $d(x, y) = 2^n$ where $x y = 2^n a$ with n a non-negative integer and a an odd integer.
- (iii) X is the set of functions from \mathbb{N} to \mathbb{N} ; d(f,f)=0, and for $f\neq g$, $d(f,g)=2^{-n}$ for the least n such that $f(n)\neq g(n)$.
- (iv) $X = \mathbb{C}$; d(z, z) = 0, and for $z \neq w$, d(z, w) = |z| + |w|.
- (v) $X = \mathbb{C}$; d(z, w) = |z w| if z and w lie on the same straight line through the origin, d(z, w) = |z| + |w| otherwise.
- 3. Let d and d' denote the usual and discrete metrics respectively on \mathbb{R} . Show that all functions f from \mathbb{R} with metric d' to \mathbb{R} with metric d are continuous. What are the continuous functions from \mathbb{R} with metric d to \mathbb{R} with metric d'?
- 4. Does the sequence $x_n = 3^n$ converge in \mathbb{Q} with the 3-adic metric? What about $y_n = \sum_{i=0}^n 3^i$? And $z_n = \sum_{i=0}^n 3^{i^2}$? Are they Cauchy? Is this metric space complete?
- 5. (a) Show that the union of an arbitrary (finite or infinite, countable or uncountable ...) collection of open subsets of a metric space must be open, and that the intersection of an arbitrary collection of closed subsets of a metric space must be closed.
- (b) We define the *interior* of a subset Y of a metric space X to be the largest open set Y° contained in Y, and the *closure* of Y to be the smallest closed set \bar{Y} containing Y. Why does the result of (a) tell us that these definition makes sense?
- (c) Show that

$$Y^{\circ} = \{ x \in Y : B_{\varepsilon}(x) \subset Y \text{ for some } \varepsilon > 0 \}$$

and

$$\bar{Y} = \{x \in X : x_n \to x \text{ for some sequence } (x_n) \text{ in } Y\}.$$

6. Let V be a normed space, $x \in V$ and r > 0. Prove that the closure of the open ball $B_r(x)$ is the closed ball $A_r(x) = \{y \in V : ||x - y|| \le r\}$. Give an examples to show that, in a general metric space, the closure of the open ball $B_r(x)$ need not be the closed ball $A_r(x) = \{y \in X : d(x,y) \le r\}$.

- 7. Show that the equation $\cos x = x$ has a unique real solution. Find this solution to some reasonable accuracy using an electronic pocket calculator, and justify the claimed accuracy of your approximation.
- 8. Let I = [0, R] be an interval and let C(I) be the space of continuous functions on I. Show that, for any $\alpha \in \mathbb{R}$, we may define a norm by $||f||_{\alpha} = \sup_{x \in I} |f(x)e^{-\alpha x}|$, and that the norm $||\cdot||_{\alpha}$ is Lipschitz equivalent to the uniform norm $||\cdot||_{\infty}$.

Now suppose that $\phi: \mathbb{R}^2 \to \mathbb{R}$ is continuous, and Lipschitz in the second variable. Consider the map T from C(I) to itself sending f to $y_0 + \int_0^x \phi(t, f(t)) dt$. Give an example to show that T need not be a contraction under the norm $\|\cdot\|_{\infty}$. Show, however, that T is a contraction under the norm $\|\cdot\|_{\alpha}$ for some α , and hence deduce that the differential equation $f'(x) = \phi(x, f(x))$ has a unique solution on I satisfying $f(0) = y_0$.

- 9. Let (X,d) be a non-empty, complete metric space. Suppose $f: X \to X$ is a contraction and $g: X \to X$ is a function which commutes with f, i.e. such that f(g(x)) = g(f(x)) for all $x \in X$. Show that g has a fixed point.
- 10. Give an example of a non-empty complete metric space (X,d) and a function $f: X \to X$ satisfying d(f(x), f(y)) < d(x, y) for all $x, y \in X$ with $x \neq y$, but such that f has no fixed point. Suppose now that X is a non-empty closed bounded subset of \mathbb{R}^n with the Euclidean metric. Show that in this case f must have a fixed point. If $g: X \to X$ satisfies $d(g(x), g(y)) \leq d(x, y)$ for all $x, y \in X$, must g have a fixed point?
- 11. Let Y be a subset of a metric space X. Show that by repeatedly taking interiors and closures, it is not possible to obtain more than seven distinct sets (including the set Y itself). Give an example in \mathbb{R} with the usual metric where we obtain precisely seven sets.
- 12. Let (X, d) be a non-empty, complete metric space, let $f: X \to X$ be a continuous function, and let $k \in [0, 1)$.
- (a) Suppose we assume that for all $x, y \in X$ we have either $d(f(x), f(y)) \leq kd(x, y)$ or $d(f(f(x)), f(f(y))) \leq kd(x, y)$. Show that f has a fixed point.
- ⁺(b) Suppose instead we assume only that for all $x, y \in X$ we have $d(f(x), f(y)) \le kd(x, y)$, or $d(f(f(x)), f(f(y))) \le kd(x, y)$ or $d(f(f(x)), f(f(y))) \le kd(x, y)$. Must f have a fixed point?