Unless stated otherwise, the space \mathbb{R}^n may be assumed to have the Euclidean norm $||x|| = \sqrt{\sum_{i=1}^n x_i^2}$, and the spaces ℓ_{∞} and ℓ_0 the uniform norm $||x|| = \sup_i |x_i|$.

1. Let $(x^{(m)})$ and $(y^{(m)})$ be sequences in \mathbb{R}^n converging to x and y respectively. Show that $x^{(m)}.y^{(m)} \to x.y$. Deduce that if $f: \mathbb{R}^n \to \mathbb{R}^p$ and $g: \mathbb{R}^n \to \mathbb{R}^p$ are continuous at $x \in \mathbb{R}^n$ then so is the function f.g (where $f.g: \mathbb{R}^n \to \mathbb{R}$ is defined by (f.g)(y) = f(y).g(y)).

2. Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a function. Show that f is continuous at a point $x \in \mathbb{R}^n$ if and only if each of the co-ordinate functions $f_i: \mathbb{R}^n \to \mathbb{R}$ (i = 1, 2, ..., m) is continuous at x. Give an example of a function $f: \mathbb{R} \to \ell_{\infty}$ such that each of the co-ordinate functions $f_i: \mathbb{R} \to \mathbb{R}$ (i = 1, 2, 3, ...) is continuous but such that f itself is not continuous at some point.

[For a function f taking values in \mathbb{R}^m (or in ℓ_{∞}), the co-ordinate functions f_i are the real-valued functions such that $f(x) = (f_1(x), f_2(x), \dots, f_m(x))$ (or $f(x) = (f_1(x), f_2(x), f_3(x), \dots)$) for each x.]

3. Show that $||x||_1 = \sum_{i=1}^n |x_i|$ defines a norm on \mathbb{R}^n . Show directly that it is Lipschitz equivalent to the Euclidean norm.

4. (a) Show that $||f||_1 = \int_0^1 |f|$ defines a norm on the vector space C([0,1]). Is it Lipschitz equivalent to the uniform norm?

(b) Let R([0,1]) denote the vector space of all integrable functions on [0,1]. Does $||f||_1 = \int_0^1 |f|$ define a norm on R([0,1])?

5. Which of the following subsets of \mathbb{R}^2 are open? Which are closed? Which are path-connected? (And why?)

- (i) $\{(x,0): 0 \le x \le 1\};$
- (ii) $\{(x,0) : 0 < x < 1\};$
- (iii) $\{(x, y) : y \neq 0\};$
- (iv) $\{(x, y) : x \in \mathbb{Q} \text{ or } y \in \mathbb{Q}\};$
- (v) $\{(x, y) : y = nx \text{ for some } n \in \mathbb{N}\} \cup \{(x, y) : x = 0\};$
- (vi) $\{(x,y) : y = qx \text{ for some } q \in \mathbb{Q}\} \cup \{(x,y) : x = 0\};$
- (vii) $\{(x, f(x)) : x \in \mathbb{R}\}$, where $f: \mathbb{R} \to \mathbb{R}$ is a continuous function;
- (viii) $\{(x, \sin \frac{1}{x}) : x \in (0, \infty)\} \cup \{(0, y) : -1 \le y \le 1\}.$

6. Is the set $\{f : f(1/2) = 0\}$ closed in the space C([0,1]) with the uniform norm? What about the set $\{f : \int_0^1 f = 0\}$? In each case, does the answer change if we replace the uniform norm with the norm $\|\cdot\|_1$ defined in Q4?

7. Which of the following functions f are continuous?

- (i) The linear map $f: \ell_{\infty} \to \mathbb{R}$ defined by $f(x) = \sum_{n=1}^{\infty} x_n/n^2$;
- (ii) The identity map from the space C([0,1]) with the uniform norm $\|\cdot\|_{\infty}$ to the space C([0,1]) with the norm $\|\cdot\|_1$ as defined in Q4;
- (iii) The identity map from C([0,1]) with the norm $\|\cdot\|_1$ to C([0,1]) with the norm $\|\cdot\|_{\infty}$;
- (iv) The linear map $f: \ell_0 \to \mathbb{R}$ defined by $f(x) = \sum_{i=1}^{\infty} x_i$.

8. (a) Show that any linear map from \mathbb{R}^n to \mathbb{R}^m must be continuous.

(b) Show that $\|\alpha\| = \sup\{\|\alpha(x)\| : x \in \mathbb{R}^n, \|x\| \le 1\}$ defines a norm on the space $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ of linear maps from \mathbb{R}^n to \mathbb{R}^m .

9. For $X, Y \subset \mathbb{R}^n$, define $X + Y = \{x + y : x \in X, y \in Y\}$. Give examples of closed sets $X, Y \subset \mathbb{R}^n$ for some *n* such that X + Y is not closed. Show that it is not possible to find such an example with X bounded. If $V, W \subset \mathbb{R}^n$ are open, must V + W be open?

10. (a) Show that the space ℓ_{∞} is complete. Show also that $c_0 = \{x \in \ell_{\infty} : x_n \to 0\}$, the vector subspace of ℓ_{∞} consisting of all sequences converging to 0, is complete.

(b) Define a norm $\|\cdot\|_{\infty}$ on the space R([0,1]) of Q4 by $\|f\|_{\infty} = \sup\{|f(x)| : x \in [0,1]\}$. Is it complete?

11. Let V be a normed space in which every bounded sequence has a convergent subsequence.

- (a) Show that V must be complete.
- (b) Show further that V must be finite-dimensional

12. Show that a set $I \subset \mathbb{R}$ is path-connected if and only if I is an interval.

[An interval is a set taking one of the forms $(-\infty, \infty)$, $(-\infty, b)$, $(-\infty, b]$, $[a, \infty)$, (a, ∞) , [a, b], [a, b), (a, b] or (a, b) for some $a, b \in \mathbb{R}$ with $a \leq b$. In particular, the empty set is an interval and each one-point set is an interval.]

13. Let $(x^{(n)})_{n\geq 1}$ be a bounded sequence in ℓ_{∞} . Show that there is a subsequence $(x^{(n_j)})_{j\geq 1}$ which converges in every co-ordinate; that is to say, the sequence $(x_i^{(n_j)})_{j\geq 1}$ of real numbers converges for each *i*. Why does this not show that every bounded sequence in ℓ_{∞} has a convergent subsequence?

14. Show that $||x||_1 = \sum_{i=1}^{\infty} |x_i|$ defines a norm on ℓ_0 , and that this norm is not Lipschitz equivalent to the sup norm $||\cdot||_{\infty}$. Find a third norm on ℓ_0 which is equivalent neither to $||\cdot||_1$ nor to $||\cdot||_{\infty}$. Is it possible to find uncountably many norms on ℓ_0 such that no two are Lipschitz equivalent?

+15. Let V be a real vector space with a countably infinite basis; that is to say, there is some sequence e_1, e_2, e_3, \ldots of elements of V such that each non-zero $x \in V$ has a unique expression in the form $x = \sum_{i=1}^{k} \lambda_i e_{n_i}$ with k a positive integer, $1 \leq n_1 < n_2 < \cdots < n_k$, and $\lambda_1, \lambda_2, \ldots, \lambda_k$ non-zero real numbers. Show that any norm on V must be incomplete.

⁺16. Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a function under which the image of any path-connected set is path-connected and the image of any closed bounded set is closed and bounded. Show that f must be continuous.